BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7634466)

  • 1. Glibenclamide, a selective inhibitor of ATP-sensitive K+ channels, attenuates metabolic coronary vasodilatation induced by pacing tachycardia in dogs.
    Katsuda Y; Egashira K; Ueno H; Akatsuka Y; Narishige T; Arai Y; Takayanagi T; Shimokawa H; Takeshita A
    Circulation; 1995 Aug; 92(3):511-7. PubMed ID: 7634466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of K+ATP channels in local metabolic coronary vasodilation.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    Am J Physiol; 1999 Dec; 277(6):H2115-23. PubMed ID: 10600828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glibenclamide prevents coronary vasodilation induced by beta 1-adrenoceptor stimulation in dogs.
    Narishige T; Egashira K; Akatsuka Y; Imamura Y; Takahashi T; Kasuya H; Takeshita A
    Am J Physiol; 1994 Jan; 266(1 Pt 2):H84-92. PubMed ID: 7905717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ATP-sensitive potassium channel inhibition on coronary metabolic vasodilation in humans.
    Farouque HM; Worthley SG; Meredith IT
    Arterioscler Thromb Vasc Biol; 2004 May; 24(5):905-10. PubMed ID: 15016638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous adenosine mediates coronary vasodilation during exercise after K(ATP)+ channel blockade.
    Duncker DJ; van Zon NS; Pavek TJ; Herrlinger SK; Bache RJ
    J Clin Invest; 1995 Jan; 95(1):285-95. PubMed ID: 7814627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of K+ATP channels in coronary vasodilation during exercise.
    Duncker DJ; Van Zon NS; Altman JD; Pavek TJ; Bache RJ
    Circulation; 1993 Sep; 88(3):1245-53. PubMed ID: 8353886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of K(+)(ATP) channels and adenosine in regulation of coronary blood flow in the hypertrophied left ventricle.
    Melchert PJ; Duncker DJ; Traverse JH; Bache RJ
    Am J Physiol; 1999 Aug; 277(2 Pt 2):H617-25. PubMed ID: 10444487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary vascular K+ATP channels contribute to the maintenance of myocardial perfusion in dogs with pacing-induced heart failure.
    Yamamoto M; Egashira K; Arimura K; Tada H; Shimokawa H; Takeshita A
    Jpn Circ J; 2000 Sep; 64(9):701-7. PubMed ID: 10981856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-derived nitric oxide does not modulate metabolic coronary vasodilation induced by tachycardia in dogs.
    Katsuda Y; Egashira K; Akatsuka Y; Narishige T; Shimokawa H; Takeshita A
    J Cardiovasc Pharmacol; 1995 Sep; 26(3):437-44. PubMed ID: 8583786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation in the dog.
    Akatsuka Y; Egashira K; Katsuda Y; Narishige T; Ueno H; Shimokawa H; Takeshita A
    Cardiovasc Res; 1994 Jun; 28(6):906-11. PubMed ID: 7923297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glibenclamide, a specific inhibitor of ATP-sensitive K+ channels, inhibits coronary vasodilation induced by angiotensin II-receptor antagonists.
    Tada H; Egashira K; Yamamoto M; Ueno H; Takemoto M; Shimokawa H; Takeshita A
    J Cardiovasc Pharmacol; 1997 Sep; 30(3):313-9. PubMed ID: 9300314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of blockade of the ATP-sensitive potassium channel on metabolic coronary vasodilation in the dog.
    Aversano T; Ouyang P; Silverman H; Ziegelstein RC; Gips S
    Pharmacology; 1993 Dec; 47(6):360-8. PubMed ID: 8278458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise.
    Ishibashi Y; Duncker DJ; Zhang J; Bache RJ
    Circ Res; 1998 Feb; 82(3):346-59. PubMed ID: 9486663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure.
    Traverse JH; Chen Y; Hou M; Li Y; Bache RJ
    Circ Res; 2007 Jun; 100(11):1643-9. PubMed ID: 17478726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glibenclamide attenuates adenosine-induced bradycardia and coronary vasodilatation.
    Belloni FL; Hintze TH
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H720-7. PubMed ID: 1909503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow.
    Duncker DJ; van Zon NS; Ishibashi Y; Bache RJ
    J Clin Invest; 1996 Feb; 97(4):996-1009. PubMed ID: 8613554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of K(ATP)(+) channels and adenosine in the control of coronary blood flow during exercise.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    J Appl Physiol (1985); 2000 Aug; 89(2):529-36. PubMed ID: 10926635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-sensitive K+ channel opener pinacidil augments beta 1-adrenoceptor-induced coronary vasodilation in dogs.
    Katsuda Y; Egashira K; Ueno H; Arai Y; Akatsuka Y; Kuga T; Shimokawa H; Takeshita A
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2210-5. PubMed ID: 8764276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glibenclamide decreases basal coronary blood flow in anesthetized dogs.
    Imamura Y; Tomoike H; Narishige T; Takahashi T; Kasuya H; Takeshita A
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H399-404. PubMed ID: 1510137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of coronary microvascular responses to metabolic stimulation.
    Embrey RP; Brooks LA; Dellsperger KC
    Cardiovasc Res; 1997 Jul; 35(1):148-57. PubMed ID: 9302359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.