BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7634597)

  • 1. Predicting pathologic fracture risk in the management of metastatic bone defects.
    Hipp JA; Springfield DS; Hayes WC
    Clin Orthop Relat Res; 1995 Mar; (312):120-35. PubMed ID: 7634597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density predicts the activity-dependent failure load of proximal femora with defects.
    Michaeli DA; Inoue K; Hayes WC; Hipp JA
    Skeletal Radiol; 1999 Feb; 28(2):90-5. PubMed ID: 10197454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting failure load of the femur with simulated osteolytic defects using noninvasive imaging technique in a simplified load case.
    Lee T
    Ann Biomed Eng; 2007 Apr; 35(4):642-50. PubMed ID: 17286207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of trabecular bone with simulated lytic defects can be predicted non-invasively by structural analysis.
    Hong J; Cabe GD; Tedrow JR; Hipp JA; Snyder BD
    J Orthop Res; 2004 May; 22(3):479-86. PubMed ID: 15099624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical model of a high risk impending pathologic fracture of the femur: lesion creation based on clinically implemented scoring systems.
    Alexander GE; Gutierrez S; Nayak A; Palumbo BT; Cheong D; Letson GD; Santoni BG
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):408-14. PubMed ID: 23597777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Internal osteosynthesis of pathological fractures caused by breast cancer].
    Lindecken KD; Kühr J; Schander K
    Geburtshilfe Frauenheilkd; 1983 Mar; 43(3):191-2. PubMed ID: 6553002
    [No Abstract]   [Full Text] [Related]  

  • 7. The assessment of the risk of fracture in femora with metastatic lesions: comparing case-specific finite element analyses with predictions by clinical experts.
    Derikx LC; van Aken JB; Janssen D; Snyers A; van der Linden YM; Verdonschot N; Tanck E
    J Bone Joint Surg Br; 2012 Aug; 94(8):1135-42. PubMed ID: 22844058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastatic burst fracture risk prediction using biomechanically based equations.
    Roth SE; Mousavi P; Finkelstein J; Chow E; Kreder H; Whyne CM
    Clin Orthop Relat Res; 2004 Feb; (419):83-90. PubMed ID: 15021137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural consequences of endosteal metastatic lesions in long bones.
    Hipp JA; McBroom RJ; Cheal EJ; Hayes WC
    J Orthop Res; 1989; 7(6):828-37. PubMed ID: 2795323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the pathological fracture risk during stance and fall-loading configurations for metastases in the proximal femur, using a computed tomography-based finite element method.
    Shinoda Y; Kobayashi H; Kaneko M; Ohashi S; Bessho M; Hayashi N; Oka H; Imanishi J; Sawada R; Ogura K; Tanaka S; Haga N; Kawano H
    J Orthop Sci; 2019 Nov; 24(6):1074-1080. PubMed ID: 31521453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the metastatic defect on the structural response and failure process of human vertebrae: an experimental study.
    Alkalay RN
    Clin Biomech (Bristol, Avon); 2015 Feb; 30(2):121-8. PubMed ID: 25586264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects: a CT scan-based finite element analysis.
    Spruijt S; van der Linden JC; Dijkstra PD; Wiggers T; Oudkerk M; Snijders CJ; van Keulen F; Verhaar JA; Weinans H; Swierstra BA
    Acta Orthop; 2006 Jun; 77(3):474-81. PubMed ID: 16819688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metastatic bone disease. A study of the surgical treatment of 166 pathologic humeral and femoral fractures.
    Yazawa Y; Frassica FJ; Chao EY; Pritchard DJ; Sim FH; Shives TC
    Clin Orthop Relat Res; 1990 Feb; (251):213-9. PubMed ID: 2295178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the cortical shell of vertebrae to mechanical behaviour of the lumbar vertebrae with implications for predicting fracture risk.
    Andresen R; Werner HJ; Schober HC
    Br J Radiol; 1998 Jul; 71(847):759-65. PubMed ID: 9771387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthopaedic management of extremity and pelvic lesions.
    Harrington KD
    Clin Orthop Relat Res; 1995 Mar; (312):136-47. PubMed ID: 7634598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive Failure Load Prediction of Vertebrae with Simulated Lytic Defects and Biomaterial Augmentation.
    Giambini H; Fang Z; Zeng H; Camp JJ; Yaszemski MJ; Lu L
    Tissue Eng Part C Methods; 2016 Aug; 22(8):717-24. PubMed ID: 27260559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QCT-based finite element prediction of pathologic fractures in proximal femora with metastatic lesions.
    Benca E; Synek A; Amini M; Kainberger F; Hirtler L; Windhager R; Mayr W; Pahr DH
    Sci Rep; 2019 Jul; 9(1):10305. PubMed ID: 31311994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel approach of predicting fracture load in the human proximal femur using non-invasive QCT imaging technique.
    Lee T; Pereira BP; Chung YS; Oh HJ; Choi JB; Lim D; Shin JH
    Ann Biomed Eng; 2009 May; 37(5):966-75. PubMed ID: 19288197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the strength of femoral shafts with and without metastatic lesions.
    Keyak JH; Kaneko TS; Rossi SA; Pejcic MR; Tehranzadeh J; Skinner HB
    Clin Orthop Relat Res; 2005 Oct; 439():161-70. PubMed ID: 16205155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models.
    Tanck E; van Aken JB; van der Linden YM; Schreuder HW; Binkowski M; Huizenga H; Verdonschot N
    Bone; 2009 Oct; 45(4):777-83. PubMed ID: 19539798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.