BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7635066)

  • 1. Regulation of mouse egg activation: presence of ryanodine receptors and effects of microinjected ryanodine and cyclic ADP ribose on uninseminated and inseminated eggs.
    Ayabe T; Kopf GS; Schultz RM
    Development; 1995 Jul; 121(7):2233-44. PubMed ID: 7635066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of inositol 1,4,5-trisphosphate-mediated Ca2+ release in early and late events of mouse egg activation.
    Xu Z; Kopf GS; Schultz RM
    Development; 1994 Jul; 120(7):1851-9. PubMed ID: 7924992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The existence of inositol 1,4,5-trisphosphate and ryanodine receptors in mature bovine oocytes.
    Yue C; White KL; Reed WA; Bunch TD
    Development; 1995 Aug; 121(8):2645-54. PubMed ID: 7545575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of two series of Ca2+ oscillations in activation of ascidian eggs.
    Yoshida M; Sensui N; Inoue T; Morisawa M; Mikoshiba K
    Dev Biol; 1998 Nov; 203(1):122-33. PubMed ID: 9806778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in the intracellular Ca2+ release mechanisms in porcine oocytes.
    Macháty Z; Funahashi H; Day BN; Prather RS
    Biol Reprod; 1997 Apr; 56(4):921-30. PubMed ID: 9096874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling.
    Tanaka Y; Tashjian AH
    J Biol Chem; 1994 Apr; 269(15):11247-53. PubMed ID: 8157654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two intracellular Ca2+ release channels, ryanodine receptor and inositol 1,4,5-trisphosphate receptor, play different roles during fertilization in ascidians.
    Albrieux M; Sardet C; Villaz M
    Dev Biol; 1997 Sep; 189(2):174-85. PubMed ID: 9299112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of intracellular calcium in the mouse egg: evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release.
    Kline JT; Kline D
    Biol Reprod; 1994 Jan; 50(1):193-203. PubMed ID: 8312443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Egg-induced modifications of the zona pellucida of mouse eggs: effects of microinjected inositol 1,4,5-trisphosphate.
    Kurasawa S; Schultz RM; Kopf GS
    Dev Biol; 1989 May; 133(1):295-304. PubMed ID: 2785065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources of calcium in sea urchin eggs during the fertilization response.
    Shen SS; Buck WR
    Dev Biol; 1993 May; 157(1):157-69. PubMed ID: 8482408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells.
    Zhang X; Wen J; Bidasee KR; Besch HR; Rubin RP
    Am J Physiol; 1997 Oct; 273(4):C1306-14. PubMed ID: 9357775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose.
    Chini EN; Dousa TP
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C530-7. PubMed ID: 8779916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic calcium release in the sea urchin egg by ryanodine and cyclic ADP ribose.
    Buck WR; Hoffmann EE; Rakow TL; Shen SS
    Dev Biol; 1994 May; 163(1):1-10. PubMed ID: 8174765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in ascidian oocytes.
    Albrieux M; Lee HC; Villaz M
    J Biol Chem; 1998 Jun; 273(23):14566-74. PubMed ID: 9603972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of in vitro matured pig oocytes using activators of inositol triphosphate or ryanodine receptors.
    Petr J; Urbánková D; Tománek M; Rozinek J; Jílek F
    Anim Reprod Sci; 2002 Apr; 70(3-4):235-49. PubMed ID: 11943493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of calcium release and sequestration in eggs of Chaetopterus pergamentaceus.
    Thomas TW; Eckberg WR; Dubé F; Galione A
    Cell Calcium; 1998 Oct; 24(4):285-92. PubMed ID: 9883282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs.
    Galione A; McDougall A; Busa WB; Willmott N; Gillot I; Whitaker M
    Science; 1993 Jul; 261(5119):348-52. PubMed ID: 8392748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release.
    Sitsapesan R; McGarry SJ; Williams AJ
    Trends Pharmacol Sci; 1995 Nov; 16(11):386-91. PubMed ID: 8578608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of G proteins in mouse egg activation: stimulatory effects of acetylcholine on the ZP2 to ZP2f conversion and pronuclear formation in eggs expressing a functional m1 muscarinic receptor.
    Williams CJ; Schultz RM; Kopf GS
    Dev Biol; 1992 May; 151(1):288-96. PubMed ID: 1577193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini.
    Leite MF; Burgstahler AD; Nathanson MH
    Gastroenterology; 2002 Feb; 122(2):415-27. PubMed ID: 11832456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.