These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 7635287)

  • 1. Genetic characterization of ms (3) K81, a paternal effect gene of Drosophila melanogaster.
    Yasuda GK; Schubiger G; Wakimoto BT
    Genetics; 1995 May; 140(1):219-29. PubMed ID: 7635287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The paternal effect gene ms(3)sneaky is required for sperm activation and the initiation of embryogenesis in Drosophila melanogaster.
    Fitch KR; Wakimoto BT
    Dev Biol; 1998 May; 197(2):270-82. PubMed ID: 9630751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paternal imprint essential for the inheritance of telomere identity in Drosophila.
    Gao G; Cheng Y; Wesolowska N; Rong YS
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4932-7. PubMed ID: 21383184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability.
    Loppin B; Lepetit D; Dorus S; Couble P; Karr TL
    Curr Biol; 2005 Jan; 15(2):87-93. PubMed ID: 15668163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11.
    Hill DP; Shakes DC; Ward S; Strome S
    Dev Biol; 1989 Nov; 136(1):154-66. PubMed ID: 2806718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Drosophila misfire gene has an essential role in sperm activation during fertilization.
    Ohsako T; Hirai K; Yamamoto MT
    Genes Genet Syst; 2003 Jun; 78(3):253-66. PubMed ID: 12893967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specialization of a Drosophila capping protein essential for the protection of sperm telomeres.
    Dubruille R; Orsi GA; Delabaere L; Cortier E; Couble P; Marais GA; Loppin B
    Curr Biol; 2010 Dec; 20(23):2090-9. PubMed ID: 21093267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposon insertions causing constitutive Sex-lethal activity in Drosophila melanogaster affect Sxl sex-specific transcript splicing.
    Bernstein M; Lersch RA; Subrahmanyan L; Cline TW
    Genetics; 1995 Feb; 139(2):631-48. PubMed ID: 7713421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of the male pronuclear lamina in Drosophila melanogaster.
    Liu J; Lin H; Lopez JM; Wolfner MF
    Dev Biol; 1997 Apr; 184(2):187-96. PubMed ID: 9133429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic analysis of the Suppressor 2 of zeste complex of Drosophila melanogaster.
    Wu CT; Howe M
    Genetics; 1995 May; 140(1):139-81. PubMed ID: 7635282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three rows gene of Drosophila melanogaster encodes a novel protein that is required for chromosome disjunction during mitosis.
    D'Andrea RJ; Stratmann R; Lehner CF; John UP; Saint R
    Mol Biol Cell; 1993 Nov; 4(11):1161-74. PubMed ID: 8305737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engrailed gene dosage determines whether certain recessive cubitus interruptus alleles exhibit dominance of the adult wing phenotype in Drosophila.
    Locke J; Hanna S
    Dev Genet; 1996; 19(4):340-9. PubMed ID: 9023986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ketel(D) dominant-negative mutations identify maternal function of the Drosophila importin-beta gene required for cleavage nuclei formation.
    Tirián L; Puro J; Erdélyi M; Boros I; Papp B; Lippai M; Szabad J
    Genetics; 2000 Dec; 156(4):1901-12. PubMed ID: 11102383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A development genetic analysis of the gene regulator of postbithorax in Drosophila melanogaster.
    Bender M; Turner FR; Kaufman TC
    Dev Biol; 1987 Feb; 119(2):418-32. PubMed ID: 3100363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of two female-sterile loci affecting eggshell integrity and embryonic pattern formation in Drosophila melanogaster.
    Degelmann A; Hardy PA; Mahowald AP
    Genetics; 1990 Oct; 126(2):427-34. PubMed ID: 2123163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and analysis of mutations in bob, Doa and eight new genes required for oocyte specification and development in Drosophila melanogaster.
    Morris JZ; Navarro C; Lehmann R
    Genetics; 2003 Aug; 164(4):1435-46. PubMed ID: 12930750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and molecular analysis of the X chromosomal region 14B17-14C4 in Drosophila melanogaster: loss of function in NONA, a nuclear protein common to many cell types, results in specific physiological and behavioral defects.
    Stanewsky R; Rendahl KG; Dill M; Saumweber H
    Genetics; 1993 Oct; 135(2):419-42. PubMed ID: 8244005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of polyhomeotic with Polycomb group genes of Drosophila melanogaster.
    Cheng NN; Sinclair DA; Campbell RB; Brock HW
    Genetics; 1994 Dec; 138(4):1151-62. PubMed ID: 7896097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional and structural analysis of the Sex combs reduced locus of Drosophila melanogaster.
    Pattatucci AM; Otteson DC; Kaufman TC
    Genetics; 1991 Oct; 129(2):423-41. PubMed ID: 1743486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and genetic organization of the suppressor of sable and minute (1) 1B region in Drosophila melanogaster.
    Voelker RA; Huang SM; Wisely GB; Sterling JF; Bainbridge SP; Hiraizumi K
    Genetics; 1989 Jul; 122(3):625-42. PubMed ID: 2503417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.