These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 7635298)

  • 1. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
    Purugganan MD; Rounsley SD; Schmidt RJ; Yanofsky MF
    Genetics; 1995 May; 140(1):345-56. PubMed ID: 7635298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple interactions amongst floral homeotic MADS box proteins.
    Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H
    EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and evolution of the plant MADS-box gene family.
    Ng M; Yanofsky MF
    Nat Rev Genet; 2001 Mar; 2(3):186-95. PubMed ID: 11256070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes.
    Theissen G; Kim JT; Saedler H
    J Mol Evol; 1996 Nov; 43(5):484-516. PubMed ID: 8875863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures.
    Svensson ME; Johannesson H; Engström P
    Gene; 2000 Jul; 253(1):31-43. PubMed ID: 10925200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis.
    Pnueli L; Abu-Abeid M; Zamir D; Nacken W; Schwarz-Sommer Z; Lifschitz E
    Plant J; 1991 Sep; 1(2):255-66. PubMed ID: 1688249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of molecular evolution among paralogous floral homeotic genes.
    Lawton-Rauh AL; Buckler ES; Purugganan MD
    Mol Biol Evol; 1999 Aug; 16(8):1037-45. PubMed ID: 10474900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conifer homologues to genes that control floral development in angiosperms.
    Tandre K; Albert VA; Sundås A; Engström P
    Plant Mol Biol; 1995 Jan; 27(1):69-78. PubMed ID: 7865797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates.
    Purugganan MD
    J Mol Evol; 1997 Oct; 45(4):392-6. PubMed ID: 9321418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus.
    Okamoto H; Yano A; Shiraishi H; Okada K; Shimura Y
    Plant Mol Biol; 1994 Oct; 26(1):465-72. PubMed ID: 7948893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A short history of MADS-box genes in plants.
    Theissen G; Becker A; Di Rosa A; Kanno A; Kim JT; Münster T; Winter KU; Saedler H
    Plant Mol Biol; 2000 Jan; 42(1):115-49. PubMed ID: 10688133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.
    Riechmann JL; Krizek BA; Meyerowitz EM
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4793-8. PubMed ID: 8643482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MADS-box genes are involved in floral development and evolution.
    Saedler H; Becker A; Winter KU; Kirchner C; Theissen G
    Acta Biochim Pol; 2001; 48(2):351-8. PubMed ID: 11732606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development.
    Müller BM; Saedler H; Zachgo S
    Plant J; 2001 Oct; 28(2):169-79. PubMed ID: 11722760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions.
    Bartlett M; Thompson B; Brabazon H; Del Gizzi R; Zhang T; Whipple C
    Mol Biol Evol; 2016 Jun; 33(6):1486-501. PubMed ID: 26908583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Chen MK; Lin IC; Yang CH
    Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants.
    Münster T; Pahnke J; Di Rosa A; Kim JT; Martin W; Saedler H; Theissen G
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2415-20. PubMed ID: 9122209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.