These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 7635304)
1. Inversions with deletions and duplications. Gordon AJ; Halliday JA Genetics; 1995 May; 140(1):411-4. PubMed ID: 7635304 [TBL] [Abstract][Full Text] [Related]
2. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Trinh TQ; Sinden RR Nature; 1991 Aug; 352(6335):544-7. PubMed ID: 1865910 [TBL] [Abstract][Full Text] [Related]
3. Polymerase-specific differences in the DNA intermediates of frameshift mutagenesis. In vitro synthesis errors of Escherichia coli DNA polymerase I and its large fragment derivative. Papanicolaou C; Ripley LS J Mol Biol; 1989 May; 207(2):335-53. PubMed ID: 2666674 [TBL] [Abstract][Full Text] [Related]
4. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. Viswanathan M; Lacirignola JJ; Hurley RL; Lovett ST J Mol Biol; 2000 Sep; 302(3):553-64. PubMed ID: 10986118 [TBL] [Abstract][Full Text] [Related]
5. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks. Jones JM; Nakai H J Mol Biol; 2001 Oct; 312(5):935-47. PubMed ID: 11580240 [TBL] [Abstract][Full Text] [Related]
6. Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases. Bzymek M; Saveson CJ; Feschenko VV; Lovett ST J Bacteriol; 1999 Jan; 181(2):477-82. PubMed ID: 9882661 [TBL] [Abstract][Full Text] [Related]
7. Leading strand specific spontaneous mutation corrects a quasipalindrome by an intermolecular strand switch mechanism. Rosche WA; Trinh TQ; Sinden RR J Mol Biol; 1997 Jun; 269(2):176-87. PubMed ID: 9191063 [TBL] [Abstract][Full Text] [Related]
8. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. Wu CA; Zechner EL; Marians KJ J Biol Chem; 1992 Feb; 267(6):4030-44. PubMed ID: 1740451 [TBL] [Abstract][Full Text] [Related]
9. Insights into mutagenesis using Escherichia coli chromosomal lacZ strains that enable detection of a wide spectrum of mutational events. Seier T; Padgett DR; Zilberberg G; Sutera VA; Toha N; Lovett ST Genetics; 2011 Jun; 188(2):247-62. PubMed ID: 21441210 [TBL] [Abstract][Full Text] [Related]
10. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. Karthikeyan R; Vonarx EJ; Straffon AF; Simon M; Faye G; Kunz BA J Mol Biol; 2000 Jun; 299(2):405-19. PubMed ID: 10860748 [TBL] [Abstract][Full Text] [Related]
11. Mutational specificity of the dnaE173 mutator associated with a defect in the catalytic subunit of DNA polymerase III of Escherichia coli. Mo JY; Maki H; Sekiguchi M J Mol Biol; 1991 Dec; 222(4):925-36. PubMed ID: 1762158 [TBL] [Abstract][Full Text] [Related]
12. Replication strand preference for deletions associated with DNA palindromes. Pinder DJ; Blake CE; Lindsey JC; Leach DR Mol Microbiol; 1998 May; 28(4):719-27. PubMed ID: 9643540 [TBL] [Abstract][Full Text] [Related]
13. Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands. Rosche WA; Trinh TQ; Sinden RR J Bacteriol; 1995 Aug; 177(15):4385-91. PubMed ID: 7635823 [TBL] [Abstract][Full Text] [Related]
14. Mutations produced by DNA polymerase III holoenzyme of Escherichia coli after in vitro synthesis in the absence of single-strand binding protein. Carraway M; Rewinski C; Marinus MG Mol Microbiol; 1990 Oct; 4(10):1645-52. PubMed ID: 1963919 [TBL] [Abstract][Full Text] [Related]
15. Greater susceptibility to mutations in lagging strand of DNA replication in Escherichia coli than in leading strand. Veaute X; Fuchs RP Science; 1993 Jul; 261(5121):598-600. PubMed ID: 8342022 [TBL] [Abstract][Full Text] [Related]
16. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro. Higuchi K; Katayama T; Iwai S; Hidaka M; Horiuchi T; Maki H Genes Cells; 2003 May; 8(5):437-49. PubMed ID: 12694533 [TBL] [Abstract][Full Text] [Related]
17. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Lovett ST Mol Microbiol; 2004 Jun; 52(5):1243-53. PubMed ID: 15165229 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Lovett ST; Feschenko VV Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7120-4. PubMed ID: 8692955 [TBL] [Abstract][Full Text] [Related]
19. Identification of Subunit Binding Positions on a Model Fork and Displacements That Occur during Sequential Assembly of the Escherichia coli Primosome. Manhart CM; McHenry CS J Biol Chem; 2015 Apr; 290(17):10828-39. PubMed ID: 25745110 [TBL] [Abstract][Full Text] [Related]
20. The influence of primary and secondary DNA structure in deletion and duplication between direct repeats in Escherichia coli. Trinh TQ; Sinden RR Genetics; 1993 Jun; 134(2):409-22. PubMed ID: 8325478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]