These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 7636757)
1. Colchicine and cytochalasin B enhance cyclic AMP accumulation via postreceptor actions. Jasper JR; Post SR; Desai KH; Insel PA; Bernstein D J Pharmacol Exp Ther; 1995 Aug; 274(2):937-42. PubMed ID: 7636757 [TBL] [Abstract][Full Text] [Related]
2. Forskolin potentiation of cholera toxin-stimulated cyclic AMP accumulation in intact C6-2B cells. Evidence for enhanced Gs-C coupling. Barovsky K; Brooker G Mol Pharmacol; 1985 Dec; 28(6):502-7. PubMed ID: 3001496 [TBL] [Abstract][Full Text] [Related]
3. Heterologous regulations of cAMP responses in pregnant rat myometrium. Evolution from a stimulatory to an inhibitory prostaglandin E2 and prostacyclin effect. Tanfin Z; Harbon S Mol Pharmacol; 1987 Aug; 32(1):249-57. PubMed ID: 3039339 [TBL] [Abstract][Full Text] [Related]
4. Amplification of cyclic AMP generation reveals agonistic effects of certain beta-adrenergic antagonists. Jasper JR; Michel MC; Insel PA Mol Pharmacol; 1990 Jan; 37(1):44-9. PubMed ID: 1967818 [TBL] [Abstract][Full Text] [Related]
5. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells. Barovsky K; Pedone C; Brooker G Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities of S49 lymphoma cells by agents increasing cyclic AMP. Honeysett JM; Insel PA J Cyclic Nucleotide Res; 1981; 7(5):321-32. PubMed ID: 6284819 [TBL] [Abstract][Full Text] [Related]
7. Alteration in Gs-mediated signal transduction in S49 lymphoma cells treated with inhibitors of microtubules. Leiber D; Jasper JR; Alousi AA; Martin J; Bernstein D; Insel PA J Biol Chem; 1993 Feb; 268(6):3833-7. PubMed ID: 8095044 [TBL] [Abstract][Full Text] [Related]
8. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C. Debernardi MA; Munshi R; Brooker G Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803 [TBL] [Abstract][Full Text] [Related]
9. Estrogen reduces beta-adrenoceptor-mediated cAMP production and the concentration of the guanyl nucleotide-regulatory protein, Gs, in rabbit myometrium. Riemer RK; Wu YY; Bottari SP; Jacobs MM; Goldfien A; Roberts JM Mol Pharmacol; 1988 Apr; 33(4):389-95. PubMed ID: 2833685 [TBL] [Abstract][Full Text] [Related]
10. Expression of beta-adrenergic receptors in synchronous and asynchronous S49 lymphoma cells. II. Relationship between receptor number and response. Mahan LC; Insel PA Mol Pharmacol; 1986 Jan; 29(1):16-22. PubMed ID: 3003560 [TBL] [Abstract][Full Text] [Related]
11. Chronic somatostatin treatment induces enhanced forskolin-stimulated cAMP accumulation in wild-type S49 mouse lymphoma cells but not in protein kinase-deficient mutants. Thomas JM; Hoffman BB Mol Pharmacol; 1989 Jan; 35(1):116-24. PubMed ID: 2563303 [TBL] [Abstract][Full Text] [Related]
12. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. Zeiders JL; Seidler FJ; Slotkin TA J Mol Cell Cardiol; 1997 Feb; 29(2):603-15. PubMed ID: 9140819 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the adenylyl cyclase signaling system in various types of cultured endothelial cells. Manolopoulos VG; Samet MM; Lelkes PI J Cell Biochem; 1995 Apr; 57(4):590-8. PubMed ID: 7542252 [TBL] [Abstract][Full Text] [Related]
14. Regulation of cyclic AMP accumulation in lymphoid cells. Insel PA; Motulsky HJ; Mahan LC Proc Soc Exp Biol Med; 1985 Sep; 179(4):472-8. PubMed ID: 2991940 [TBL] [Abstract][Full Text] [Related]
15. Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Ostrom RS; Violin JD; Coleman S; Insel PA Mol Pharmacol; 2000 May; 57(5):1075-9. PubMed ID: 10779394 [TBL] [Abstract][Full Text] [Related]
16. Pharmacologic evidence for 5-HT1A receptors associated with human retinal pigment epithelial cells in culture. Nash MS; Osborne NN Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):510-9. PubMed ID: 9040484 [TBL] [Abstract][Full Text] [Related]
17. Cytoskeletal regulation of Caco-2 intestinal monolayer paracellular permeability. Ma TY; Hollander D; Tran LT; Nguyen D; Hoa N; Bhalla D J Cell Physiol; 1995 Sep; 164(3):533-45. PubMed ID: 7650061 [TBL] [Abstract][Full Text] [Related]
18. Beta-adrenoceptor-linked signal transduction in ischemic-reperfused heart and scavenging of oxyradicals. Persad S; Takeda S; Panagia V; Dhalla NS J Mol Cell Cardiol; 1997 Feb; 29(2):545-58. PubMed ID: 9140814 [TBL] [Abstract][Full Text] [Related]
19. Multiple effects of phorbol esters on hormone-sensitive adenylate cyclase activity in S49 lymphoma cells. Bell JD; Brunton LL Am J Physiol; 1987 Jun; 252(6 Pt 1):E783-9. PubMed ID: 3035937 [TBL] [Abstract][Full Text] [Related]
20. Dual coupling of cloned human 5-hydroxytryptamine1D alpha and 5-hydroxytryptamine1D beta receptors stably expressed in murine fibroblasts: inhibition of adenylate cyclase and elevation of intracellular calcium concentrations via pertussis toxin-sensitive G protein(s). Zgombick JM; Borden LA; Cochran TL; Kucharewicz SA; Weinshank RL; Branchek TA Mol Pharmacol; 1993 Sep; 44(3):575-82. PubMed ID: 8396718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]