BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 7636757)

  • 1. Colchicine and cytochalasin B enhance cyclic AMP accumulation via postreceptor actions.
    Jasper JR; Post SR; Desai KH; Insel PA; Bernstein D
    J Pharmacol Exp Ther; 1995 Aug; 274(2):937-42. PubMed ID: 7636757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forskolin potentiation of cholera toxin-stimulated cyclic AMP accumulation in intact C6-2B cells. Evidence for enhanced Gs-C coupling.
    Barovsky K; Brooker G
    Mol Pharmacol; 1985 Dec; 28(6):502-7. PubMed ID: 3001496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous regulations of cAMP responses in pregnant rat myometrium. Evolution from a stimulatory to an inhibitory prostaglandin E2 and prostacyclin effect.
    Tanfin Z; Harbon S
    Mol Pharmacol; 1987 Aug; 32(1):249-57. PubMed ID: 3039339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of cyclic AMP generation reveals agonistic effects of certain beta-adrenergic antagonists.
    Jasper JR; Michel MC; Insel PA
    Mol Pharmacol; 1990 Jan; 37(1):44-9. PubMed ID: 1967818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells.
    Barovsky K; Pedone C; Brooker G
    Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities of S49 lymphoma cells by agents increasing cyclic AMP.
    Honeysett JM; Insel PA
    J Cyclic Nucleotide Res; 1981; 7(5):321-32. PubMed ID: 6284819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration in Gs-mediated signal transduction in S49 lymphoma cells treated with inhibitors of microtubules.
    Leiber D; Jasper JR; Alousi AA; Martin J; Bernstein D; Insel PA
    J Biol Chem; 1993 Feb; 268(6):3833-7. PubMed ID: 8095044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C.
    Debernardi MA; Munshi R; Brooker G
    Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estrogen reduces beta-adrenoceptor-mediated cAMP production and the concentration of the guanyl nucleotide-regulatory protein, Gs, in rabbit myometrium.
    Riemer RK; Wu YY; Bottari SP; Jacobs MM; Goldfien A; Roberts JM
    Mol Pharmacol; 1988 Apr; 33(4):389-95. PubMed ID: 2833685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of beta-adrenergic receptors in synchronous and asynchronous S49 lymphoma cells. II. Relationship between receptor number and response.
    Mahan LC; Insel PA
    Mol Pharmacol; 1986 Jan; 29(1):16-22. PubMed ID: 3003560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic somatostatin treatment induces enhanced forskolin-stimulated cAMP accumulation in wild-type S49 mouse lymphoma cells but not in protein kinase-deficient mutants.
    Thomas JM; Hoffman BB
    Mol Pharmacol; 1989 Jan; 35(1):116-24. PubMed ID: 2563303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.
    Zeiders JL; Seidler FJ; Slotkin TA
    J Mol Cell Cardiol; 1997 Feb; 29(2):603-15. PubMed ID: 9140819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the adenylyl cyclase signaling system in various types of cultured endothelial cells.
    Manolopoulos VG; Samet MM; Lelkes PI
    J Cell Biochem; 1995 Apr; 57(4):590-8. PubMed ID: 7542252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cyclic AMP accumulation in lymphoid cells.
    Insel PA; Motulsky HJ; Mahan LC
    Proc Soc Exp Biol Med; 1985 Sep; 179(4):472-8. PubMed ID: 2991940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes.
    Ostrom RS; Violin JD; Coleman S; Insel PA
    Mol Pharmacol; 2000 May; 57(5):1075-9. PubMed ID: 10779394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacologic evidence for 5-HT1A receptors associated with human retinal pigment epithelial cells in culture.
    Nash MS; Osborne NN
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):510-9. PubMed ID: 9040484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal regulation of Caco-2 intestinal monolayer paracellular permeability.
    Ma TY; Hollander D; Tran LT; Nguyen D; Hoa N; Bhalla D
    J Cell Physiol; 1995 Sep; 164(3):533-45. PubMed ID: 7650061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-adrenoceptor-linked signal transduction in ischemic-reperfused heart and scavenging of oxyradicals.
    Persad S; Takeda S; Panagia V; Dhalla NS
    J Mol Cell Cardiol; 1997 Feb; 29(2):545-58. PubMed ID: 9140814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple effects of phorbol esters on hormone-sensitive adenylate cyclase activity in S49 lymphoma cells.
    Bell JD; Brunton LL
    Am J Physiol; 1987 Jun; 252(6 Pt 1):E783-9. PubMed ID: 3035937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual coupling of cloned human 5-hydroxytryptamine1D alpha and 5-hydroxytryptamine1D beta receptors stably expressed in murine fibroblasts: inhibition of adenylate cyclase and elevation of intracellular calcium concentrations via pertussis toxin-sensitive G protein(s).
    Zgombick JM; Borden LA; Cochran TL; Kucharewicz SA; Weinshank RL; Branchek TA
    Mol Pharmacol; 1993 Sep; 44(3):575-82. PubMed ID: 8396718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.