These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7636767)

  • 1. Specificity and sensitivity of the olfactory organ of the zebrafish, Danio rerio.
    Michel WC; Lubomudrov LM
    J Comp Physiol A; 1995; 177(2):191-9. PubMed ID: 7636767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of distinct amino acid and bile salt receptors in the olfactory system of the zebrafish, Danio rerio.
    Michel WC; Derbidge DS
    Brain Res; 1997 Aug; 764(1-2):179-87. PubMed ID: 9295208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system.
    Michel WC; Sanderson MJ; Olson JK; Lipschitz DL
    J Exp Biol; 2003 May; 206(Pt 10):1697-706. PubMed ID: 12682101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological evidence for the broad distribution of specific odorant receptor molecules across the olfactory organ of the channel catfish.
    Chang Q; Caprio J
    Chem Senses; 1996 Oct; 21(5):519-27. PubMed ID: 8902281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide-gated channel activation is not required for activity-dependent labeling of zebrafish olfactory receptor neurons by amino acids.
    Michel WC
    Biol Signals Recept; 1999; 8(6):338-47. PubMed ID: 10592376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of bile acids by the rainbow trout olfactory system: evidence as potential pheromone.
    Giaquinto PC; Hara TJ
    Biol Res; 2008; 41(1):33-42. PubMed ID: 18769761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amplitude of the electroolfactogram in catfish correlates with the proportion of responding ORNs.
    Koce A; Valentincic T
    Pflugers Arch; 2000; 439(3 Suppl):R171-2. PubMed ID: 10653181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological evidence for a chemotopy of biologically relevant odors in the olfactory bulb of the channel catfish.
    Nikonov AA; Caprio J
    J Neurophysiol; 2001 Oct; 86(4):1869-76. PubMed ID: 11600646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and physiological evidence that bile acids produced and released by lake char (Salvelinus namaycush) function as chemical signals.
    Zhang C; Brown SB; Hara TJ
    J Comp Physiol B; 2001 Mar; 171(2):161-71. PubMed ID: 11302533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for functional asymmetry in the olfactory system of the Senegalese sole (Solea senegalensis).
    Velez Z; Hubbard PC; Barata EN; Canário AV
    Physiol Biochem Zool; 2005; 78(5):756-65. PubMed ID: 16059846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olfactory sensitivity to amino acids in the blackspot sea bream (Pagellus bogaraveo): a comparison between olfactory receptor recording techniques in seawater.
    Hubbard PC; Barata EN; Ozório RO; Valente LM; Canário AV
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):839-49. PubMed ID: 21544618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotopy of amino acids on the olfactory bulb predicts olfactory discrimination capabilities of zebrafish Danio rerio.
    Miklavc P; Valentinčič T
    Chem Senses; 2012 Jan; 37(1):65-75. PubMed ID: 21778519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.
    Velez Z; Hubbard PC; Barata EN; Canário AV
    J Fish Biol; 2013 Sep; 83(3):501-14. PubMed ID: 23991870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lake char (Salvelinus namaycush) olfactory neurons are highly sensitive and specific to bile acids.
    Zhang C; Hara TJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Feb; 195(2):203-15. PubMed ID: 19137319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity and specificity of the olfactory epithelia of two elasmobranch species to bile salts.
    Meredith TL; Caprio J; Kajiura SM
    J Exp Biol; 2012 Aug; 215(Pt 15):2660-7. PubMed ID: 22786643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of Xenopus laevis water nose to water-soluble and volatile odorants.
    Iida A; Kashiwayanagi M
    J Gen Physiol; 1999 Jul; 114(1):85-92. PubMed ID: 10398694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olfactory sensitivity to bile acids in salmonid fishes.
    Døving KB; Selset R; Thommesen G
    Acta Physiol Scand; 1980 Feb; 108(2):123-31. PubMed ID: 7376910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of the laure olfactory behavioral mutant in the zebrafish, Danio rerio.
    Vitebsky A; Reyes R; Sanderson MJ; Michel WC; Whitlock KE
    Dev Dyn; 2005 Sep; 234(1):229-42. PubMed ID: 16086331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish.
    Caprio J; Byrd RP
    J Gen Physiol; 1984 Sep; 84(3):403-22. PubMed ID: 6481334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olfactory sensitivity to bile fluid and bile salts in the European eel (Anguilla anguilla), goldfish (Carassius auratus) and Mozambique tilapia (Oreochromis mossambicus) suggests a 'broad range' sensitivity not confined to those produced by conspecifics alone.
    Huertas M; Hagey L; Hofmann AF; Cerdà J; Canário AV; Hubbard PC
    J Exp Biol; 2010 Jan; 213(2):308-17. PubMed ID: 20038666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.