These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7636885)

  • 1. NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage.
    Meharg AA; Blatt MR
    J Membr Biol; 1995 May; 145(1):49-66. PubMed ID: 7636885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-affinity NO(3-)-H+ cotransport in the fungus Neurospora: induction and control by pH and membrane voltage.
    Blatt MR; Maurousset L; Meharg AA
    J Membr Biol; 1997 Nov; 160(1):59-76. PubMed ID: 9351892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium-proton symport in Neurospora: kinetic control by pH and membrane potential.
    Blatt MR; Rodriguez-Navarro A; Slayman CL
    J Membr Biol; 1987; 98(2):169-89. PubMed ID: 2959789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane transport in stomatal guard cells: the importance of voltage control.
    Thiel G; MacRobbie EA; Blatt MR
    J Membr Biol; 1992 Feb; 126(1):1-18. PubMed ID: 1534380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation.
    Diatloff E; Roberts M; Sanders D; Roberts SK
    Plant Physiol; 2004 Dec; 136(4):4136-49. PubMed ID: 15563625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.
    Li G; Tillard P; Gojon A; Maurel C
    Plant Cell Physiol; 2016 Apr; 57(4):733-42. PubMed ID: 26823528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transinhibition and voltage-gating in a fungal nitrate transporter.
    Boyd J; Gradmann D; Boyd CM
    J Membr Biol; 2003 Sep; 195(2):109-20. PubMed ID: 14692450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological study with oxonol VI of passive NO3- transport by isolated plant root plasma membrane.
    Pouliquin P; Grouzis J; Gibrat R
    Biophys J; 1999 Jan; 76(1 Pt 1):360-73. PubMed ID: 9876148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate and chloride ions have different permeation pathways in skeletal muscle fibers of Rana pipiens.
    Kotsias BA; Horowicz P
    J Membr Biol; 1990 Apr; 115(1):95-108. PubMed ID: 2159521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH.
    Blatt MR
    J Gen Physiol; 1992 Apr; 99(4):615-44. PubMed ID: 1534573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a H+/NO3- symport associated with plasma membrane vesicles of maize roots using 36ClO3- as a radiotracer analog.
    Ruiz-Cristin J; Briskin DP
    Arch Biochem Biophys; 1991 Feb; 285(1):74-82. PubMed ID: 1990981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis.
    Drechsler N; Zheng Y; Bohner A; Nobmann B; von Wirén N; Kunze R; Rausch C
    Plant Physiol; 2015 Dec; 169(4):2832-47. PubMed ID: 26508776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):63-79. PubMed ID: 1294062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate transport at the plasma membrane of leaf and root cells of Zostera marina L.
    Rubio L; Linares-Rueda A; García-Sánchez MJ; Fernández JA
    J Exp Bot; 2005 Feb; 56(412):613-22. PubMed ID: 15611145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons.
    Tombaugh GC; Somjen GG
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):719-32. PubMed ID: 8799894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation.
    Zheng Y; Drechsler N; Rausch C; Kunze R
    Plant Signal Behav; 2016 May; 11(5):e1176819. PubMed ID: 27089248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for multiple open states of the Ca2+ channels in smooth muscle cells isolated from the guinea-pig detrusor.
    Nakayama S; Brading AF
    J Physiol; 1993 Nov; 471():87-105. PubMed ID: 8120836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana.
    Kotur Z; Glass AD
    Plant Cell Environ; 2015 Aug; 38(8):1490-502. PubMed ID: 25474587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal interactions in the regulation of root nitrate uptake.
    Ruffel S; Gojon A; Lejay L
    J Exp Bot; 2014 Oct; 65(19):5509-17. PubMed ID: 25165146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma.
    Barish ME; Baud C
    J Physiol; 1984 Jul; 352():243-63. PubMed ID: 6086909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.