These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 7637312)

  • 1. [Genetics of congenital color vision defects. II. Rare types of color blindness].
    Krawczyński MR
    Klin Oczna; 1995; 97(1-2):39-43. PubMed ID: 7637312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Genetics of congenital color vision defects. I. Common types of color blindness].
    Krawczyński MR
    Klin Oczna; 1995; 97(1-2):34-8. PubMed ID: 7637311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel.
    Kohl S; Marx T; Giddings I; Jägle H; Jacobson SG; Apfelstedt-Sylla E; Zrenner E; Sharpe LT; Wissinger B
    Nat Genet; 1998 Jul; 19(3):257-9. PubMed ID: 9662398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular genetic examination in sex-linked color blindness].
    Ladekjaer-Mikkelsen AS; Jensen H; Rosenberg T; Jørgensen AL
    Ugeskr Laeger; 1995 Aug; 157(35):4822-5. PubMed ID: 7676520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Molecular genetics of red-green color blindness].
    Ladekjaer-Mikkelsen AS; Jensen H; Rosenberg T; Jørgensen AL
    Ugeskr Laeger; 1995 Aug; 157(35):4808-12. PubMed ID: 7676516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue cone monochromatism: a phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals.
    Michaelides M; Johnson S; Simunovic MP; Bradshaw K; Holder G; Mollon JD; Moore AT; Hunt DM
    Eye (Lond); 2005 Jan; 19(1):2-10. PubMed ID: 15094734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human rod monochromacy: linkage analysis and mapping of a cone photoreceptor expressed candidate gene on chromosome 2q11.
    Wissinger B; Jägle H; Kohl S; Broghammer M; Baumann B; Hanna DB; Hedels C; Apfelstedt-Sylla E; Randazzo G; Jacobson SG; Zrenner E; Sharpe LT
    Genomics; 1998 Aug; 51(3):325-31. PubMed ID: 9721202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic basis of total colourblindness among the Pingelapese islanders.
    Sundin OH; Yang JM; Li Y; Zhu D; Hurd JN; Mitchell TN; Silva ED; Maumenee IH
    Nat Genet; 2000 Jul; 25(3):289-93. PubMed ID: 10888875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of variation in human color vision.
    Deeb SS
    Clin Genet; 2005 May; 67(5):369-77. PubMed ID: 15811001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral macular atrophy in blue cone monochromacy (BCM) with loss of the locus control region (LCR) and part of the red pigment gene.
    Ayyagari R; Kakuk LE; Coats CL; Bingham EL; Toda Y; Felius J; Sieving PA
    Mol Vis; 1999 Jul; 5():13. PubMed ID: 10427103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mutation in the short-wavelength-sensitive cone pigment gene associated with a tritan color vision defect.
    Gunther KL; Neitz J; Neitz M
    Vis Neurosci; 2006; 23(3-4):403-9. PubMed ID: 16961973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual pigment gene changes in adrenoleukodystrophy.
    Sack GH; Morrell JC
    Invest Ophthalmol Vis Sci; 1993 Aug; 34(9):2634-7. PubMed ID: 8344786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular genetics of colour vision deficiencies.
    Deeb SS
    Clin Exp Optom; 2004 Jul; 87(4-5):224-9. PubMed ID: 15312026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autosomal dominant cone-rod dystrophy due to a missense mutation (R838C) in the guanylate cyclase 2D gene (GUCY2D) with preserved rod function in one branch of the family.
    Van Ghelue M; Eriksen HL; Ponjavic V; Fagerheim T; Andréasson S; Forsman-Semb K; Sandgren O; Holmgren G; Tranebjaerg L
    Ophthalmic Genet; 2000 Dec; 21(4):197-209. PubMed ID: 11135490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Blue cone monochromasia: diagnosis, genetic counseling and optical aids].
    Zrenner E; Magnussen S; Lorenz B
    Klin Monbl Augenheilkd; 1988 Nov; 193(5):510-7. PubMed ID: 3264866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position of a 'green-red' hybrid gene in the visual pigment array determines colour-vision phenotype.
    Hayashi T; Motulsky AG; Deeb SS
    Nat Genet; 1999 May; 22(1):90-3. PubMed ID: 10319869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rayleigh matches in carriers of inherited color vision defects: the contribution from the third L/M photopigment.
    Sun Y; Shevell SK
    Vis Neurosci; 2008; 25(3):455-62. PubMed ID: 18598418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is colour vision possible with only rods and blue-sensitive cones?
    Reitner A; Sharpe LT; Zrenner E
    Nature; 1991 Aug; 352(6338):798-800. PubMed ID: 1881435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trichromatic color vision with only two spectrally distinct photopigments.
    Neitz J; Neitz M; He JC; Shevell SK
    Nat Neurosci; 1999 Oct; 2(10):884-8. PubMed ID: 10491608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy.
    Michaelides M; Wilkie SE; Jenkins S; Holder GE; Hunt DM; Moore AT; Webster AR
    Ophthalmology; 2005 Aug; 112(8):1442-7. PubMed ID: 15953638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.