These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7637392)

  • 1. Enhanced oxygen consumption and fatty acid metabolism in rat bone marrow with acute promyelocytic leukaemia.
    Skrede S; Iversen PO
    Leuk Res; 1995 Jul; 19(7):463-7. PubMed ID: 7637392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats.
    Mortensen BT; Jensen PO; Helledie N; Iversen PO; Ralfkiaer E; Larsen JK; Madsen MT
    Br J Haematol; 1998 Jul; 102(2):458-64. PubMed ID: 9695960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of acetate on the metabolism of palmitate in the perfused hind-quarter of the rat.
    Karlsson N; Fellenius E; Kiessling KH
    Acta Physiol Scand; 1977 Feb; 99(2):156-65. PubMed ID: 842372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starvation-induced changes of palmitate metabolism and insulin secretion in isolated rat islets stimulated by glucose.
    Tamarit-Rodríguez J; Vara E; Tamarit J
    Biochem J; 1984 Jul; 221(2):317-24. PubMed ID: 6383345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of the fetal fatty acid oxidation in the rat.
    Zimmermann T; Hummel L
    Acta Biol Med Ger; 1978; 37(2):221-2. PubMed ID: 706935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal effects of energy utilization on palmitate oxidation and esterification in hepatocytes of fed rats.
    Zaleski J; Ontko JA
    Biochim Biophys Acta; 1985 Aug; 836(1):134-42. PubMed ID: 4027257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose stimulation of insulin secretion in islets of fed and starved rats and its dependence on lipid metabolism.
    Vara E; Tamarit-Rodriguez J
    Metabolism; 1986 Mar; 35(3):266-71. PubMed ID: 3512958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid oxidation in human and rat heart. Comparison of cell-free and cellular systems.
    Glatz JF; Jacobs AE; Veerkamp JH
    Biochim Biophys Acta; 1984 Jul; 794(3):454-65. PubMed ID: 6430348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of palmitate in perfused rat liver. Effect of low and high ethanol concentrations at various concentrations of palmitate in the perfusion medium.
    Kondrup J; Lundquist F; Damgaard SE
    Biochem J; 1979 Oct; 184(1):83-8. PubMed ID: 534522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palmitate oxidation by intact preparations of skeletal muscle.
    Glatz JF; Veerkamp JH
    Biochim Biophys Acta; 1982 Nov; 713(2):230-9. PubMed ID: 7150612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrelationships and metabolic effects of fatty acids in the perfused rat liver at hyperthermic temperatures.
    Denor PF; Sonsalla JC; Menahan LA; Skibba JL
    Cancer Biochem Biophys; 1985 Jun; 8(1):9-22. PubMed ID: 4027946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-8 as mediator in the microenvironment-leukaemia network in acute myeloid leukaemia.
    Kuett A; Rieger C; Perathoner D; Herold T; Wagner M; Sironi S; Sotlar K; Horny HP; Deniffel C; Drolle H; Fiegl M
    Sci Rep; 2015 Dec; 5():18411. PubMed ID: 26674118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of erucylcarnitine on the oxidation of palmitate by rat heart mitochondria.
    Christophersen BO; Bremer J
    FEBS Lett; 1972 Jun; 23(2):230-2. PubMed ID: 4634440
    [No Abstract]   [Full Text] [Related]  

  • 14. Decreased blood flow to rat bone marrow, bone, spleen, and liver in acute leukemia.
    Iversen PO; Thing-Mortensen B; Nicolaysen G; Benestad HB
    Leuk Res; 1993 Aug; 17(8):663-8. PubMed ID: 8355510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid oxidation in irradiated bone marrow cells.
    Snyder F
    Nature; 1965 May; 206(985):733. PubMed ID: 5832869
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of inhibition of beta-oxidation on incorporation of [U-14C]palmitate and [1-14C]arachidonate into brain lipids.
    Freed LM; Wakabayashi S; Bell JM; Rapoport SI
    Brain Res; 1994 May; 645(1-2):41-8. PubMed ID: 8062099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incomplete oxidation of palmitate and leakage of intermediary products during anoxia.
    Rabinowitz JL; Hercker ES
    Arch Biochem Biophys; 1974 Apr; 161(2):621-7. PubMed ID: 4839049
    [No Abstract]   [Full Text] [Related]  

  • 18. Labeled oxidation products from [1-14C], [U-14C] and [16-14C]-palmitate in hepatocytes and mitochondria.
    Chatzidakis C; Otto DA
    Lipids; 1987 Sep; 22(9):620-6. PubMed ID: 3312905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells.
    Tabe Y; Yamamoto S; Saitoh K; Sekihara K; Monma N; Ikeo K; Mogushi K; Shikami M; Ruvolo V; Ishizawa J; Hail N; Kazuno S; Igarashi M; Matsushita H; Yamanaka Y; Arai H; Nagaoka I; Miida T; Hayashizaki Y; Konopleva M; Andreeff M
    Cancer Res; 2017 Mar; 77(6):1453-1464. PubMed ID: 28108519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways.
    Miller JC; Gnaedinger JM; Rapoport SI
    J Neurochem; 1987 Nov; 49(5):1507-14. PubMed ID: 2889801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.