These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 7638156)
1. [Use of barium salts of pentoso-1-phosphoric acids in the enzymatic synthesis of ribothymidine and bromvinyldeoxyuridine]. Bokut' SB; Baraĭ VN; Zinchenko AI Prikl Biokhim Mikrobiol; 1995; 31(3):308-10. PubMed ID: 7638156 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity of uridine and purine nucleoside phosphorylases of the whole cells of Escherichia coli. Zintchenko AI; Eroshevskaya LA; Barai VN; Mikhailopulo IA Nucleic Acids Symp Ser; 1987; (18):137-40. PubMed ID: 3122186 [TBL] [Abstract][Full Text] [Related]
3. Study of the regulation of nucleoside metabolism in Escherichia coli. Chukanova TI; Sukhodolets VV; Flyakh YV Mol Biol; 1973; 7(3):257-63. PubMed ID: 4589446 [No Abstract] [Full Text] [Related]
4. Use of nucleoside phosphorylases for the preparation of 5-modified pyrimidine ribonucleosides. Alexeev CS; Drenichev MS; Dorinova EO; Esipov RS; Kulikova IV; Mikhailov SN Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140292. PubMed ID: 31676450 [TBL] [Abstract][Full Text] [Related]
5. Pentose phosphates in nucleoside interconversion and catabolism. Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676 [TBL] [Abstract][Full Text] [Related]
6. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles. Rader RL; Hochstadt J J Bacteriol; 1976 Oct; 128(1):290-301. PubMed ID: 789336 [TBL] [Abstract][Full Text] [Related]
7. Coupled biocatalysts applied to the synthesis of nucleosides. Medici R; Porro MT; Lewkowicz E; Montserrat J; Iribarren AM Nucleic Acids Symp Ser (Oxf); 2008; (52):541-2. PubMed ID: 18776493 [TBL] [Abstract][Full Text] [Related]
8. An Expedient Synthesis of Flexible Nucleosides through Enzymatic Glycosylation of Proximal and Distal Fleximer Bases. Vichier-Guerre S; Ku TC; Pochet S; Seley-Radtke KL Chembiochem; 2020 May; 21(10):1412-1417. PubMed ID: 31899839 [TBL] [Abstract][Full Text] [Related]
9. General Principles for Yield Optimization of Nucleoside Phosphorylase-Catalyzed Transglycosylations. Kaspar F; Giessmann RT; Hellendahl KF; Neubauer P; Wagner A; Gimpel M Chembiochem; 2020 May; 21(10):1428-1432. PubMed ID: 31820837 [TBL] [Abstract][Full Text] [Related]
10. New insights on nucleoside 2'-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs. Fresco-Taboada A; de la Mata I; Arroyo M; Fernández-Lucas J Appl Microbiol Biotechnol; 2013 May; 97(9):3773-85. PubMed ID: 23529679 [TBL] [Abstract][Full Text] [Related]
11. Anion exchange resins in phosphate form as versatile carriers for the reactions catalyzed by nucleoside phosphorylases. Artsemyeva JN; Remeeva EA; Buravskaya TN; Konstantinova ID; Esipov RS; Miroshnikov AI; Litvinko NM; Mikhailopulo IA Beilstein J Org Chem; 2020; 16():2607-2622. PubMed ID: 33133292 [TBL] [Abstract][Full Text] [Related]
12. Uridine phosphorylase from Escherichia coli B.: kinetic studies on the mechanism of catalysis. Vita A; Huang CY; Magni G Arch Biochem Biophys; 1983 Oct; 226(2):687-92. PubMed ID: 6357095 [TBL] [Abstract][Full Text] [Related]
13. Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases. Il'icheva IA; Polyakov KM; Mikhailov SN Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32260512 [TBL] [Abstract][Full Text] [Related]
14. Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate. Asztalos P; Parthier C; Golbik R; Kleinschmidt M; Hübner G; Weiss MS; Friedemann R; Wille G; Tittmann K Biochemistry; 2007 Oct; 46(43):12037-52. PubMed ID: 17914867 [TBL] [Abstract][Full Text] [Related]
15. [Demonstration of pyrimidine nucleoside phosphorylases in breast cancer]. Malette P; Sampérez S; Jouan P C R Seances Soc Biol Fil; 1989; 183(2):101-7. PubMed ID: 2531018 [TBL] [Abstract][Full Text] [Related]
16. (E)-5-(2-Bromovinyl)-2'-deoxyuridine: a good substrate for mammalian pyrimidine nucleoside phosphorylases. Liermann B; Herrmann G Biomed Biochim Acta; 1983; 42(7-8):K35-8. PubMed ID: 6651804 [TBL] [Abstract][Full Text] [Related]
17. Formation of ribothymidine from thymine and ribonucleosides by the cell-free extract of tumors and rat tissues. Yano S; Tamemasa O J Biochem; 1977 Dec; 82(6):1505-11. PubMed ID: 340451 [TBL] [Abstract][Full Text] [Related]
18. Optimized Biocatalytic Synthesis of 2-Selenopyrimidine Nucleosides by Transglycosylation*. Hellendahl KF; Kaspar F; Zhou X; Yang Z; Huang Z; Neubauer P; Kurreck A Chembiochem; 2021 Jun; 22(11):2002-2009. PubMed ID: 33594780 [TBL] [Abstract][Full Text] [Related]
19. [Synthesis of nucleosides labeled with tritium at the 5'-carbon atom of the ribose residue]. Akulov GP; Kaminskiĭ IuL; Shestakov AD; Kaiumov VG; Chernysheva LF Bioorg Khim; 1988 Jan; 14(1):37-42. PubMed ID: 3132926 [TBL] [Abstract][Full Text] [Related]
20. [2',3'- and 5'-methyl analogs of uridine in the reaction of microbiologic transglycosylation]. Zinchenko AI; Baraĭ VN; Eroshevskaia LA; Beĭgel'man LN; Mikhaĭlov SN Dokl Akad Nauk SSSR; 1987; 297(3):731-4. PubMed ID: 3128435 [No Abstract] [Full Text] [Related] [Next] [New Search]