These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 7639521)

  • 41. Regulation of the tricarboxylic acid cycle in sea urchin eggs and embryos.
    Mita M; Yasumasu I
    J Exp Zool; 1983 Oct; 228(1):71-7. PubMed ID: 6663254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetoacetyl-CoA reductase activity of lactating bovine mammary fatty acid synthase.
    Dodds PF; Guzman MG; Chalberg SC; Anderson GJ; Kumar S
    J Biol Chem; 1981 Jun; 256(12):6282-90. PubMed ID: 7016867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of CoA and acyl-CoAs on GTP-dependent Ca2+ release and vesicle fusion in rat liver microsomal vesicles.
    Comerford JG; Dawson AP
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):561-7. PubMed ID: 8380999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The specificity of 1-acyl-sn-glycerol 3-phosphate acyltransferase in microsomal fractions from lactating cow mammary gland towards short, medium and long chain acyl-CoA esters.
    Marshall MO; Knudsen J
    Biochim Biophys Acta; 1977 Nov; 489(2):236-41. PubMed ID: 922027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of polyamines on palmitoyl-CoA inhibition of glucose-6-phosphate dehydrogenase of the rat liver].
    Rodríguez-Torres AM; Ramos Martínez JI
    Rev Esp Fisiol; 1987 Mar; 43(1):119-21. PubMed ID: 3616106
    [No Abstract]   [Full Text] [Related]  

  • 46. Effects of palmitoyl-CoA on the structure-function of the fatty acid synthetase complex from Ceratitis capitata.
    Gavilanes JG; Lizarbe MA; Municio AM; Oñaderra M
    Int J Biochem; 1982; 14(12):1061-6. PubMed ID: 7173488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucose-6-phosphate dehydrogenase from Neisseria gonorrhoeae: partical characterization of the enzyme and inhibition by long-chain fatty acid acyl-coenzyme A derivatives.
    Cacciapuoti AF; Morse SA
    Can J Microbiol; 1980 Aug; 26(8):863-73. PubMed ID: 6780174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of the control of (Na+ + K+)-ATPase by long-chain acyl coenzyme A.
    Huang WH; Wang Y; Askari A
    J Biol Chem; 1989 Feb; 264(5):2605-8. PubMed ID: 2536717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors influencing the in vitro activity of diacylglycerol acyltransferase from bovine mammary gland and liver towards butyryl-CoA and palmitoyl-CoA.
    Marshall MO; Knudsen J
    Biochim Biophys Acta; 1980 Mar; 617(3):393-7. PubMed ID: 7370285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nicotinamide adenine dinucleotide phosphate linked isocitrate dehydrogenase. Catalytic activation by the reduced coenzyme product of the reaction.
    Carlier M-F ; Pantaloni D
    Biochemistry; 1976 Apr; 15(8):1761-6. PubMed ID: 5114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol.
    Willis RM; Wahlen BD; Seefeldt LC; Barney BM
    Biochemistry; 2011 Dec; 50(48):10550-8. PubMed ID: 22035211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of some glycolytic intermediates and palmitoyl-CoA on alpha-glycerophosphate dehydrogenase in mitochondria isolated from liver of triiodothyronine-treated rats.
    Swierczyński J; Scisłowski P; Aleksandrowicz Z
    Acta Biochim Pol; 1977; 24(4):281-7. PubMed ID: 610280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of polyamines on palmitoyl-coenzyme A-caused inhibition of glucose-6-phosphate dehydrogenase from baker's yeast.
    Mita M; Yasumasu I
    Arch Biochem Biophys; 1983 Oct; 226(1):19-26. PubMed ID: 6357086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of cytosolic NADP+-dependent isocitrate dehydrogenase in bovine mammary epithelium: Modulation by regulators of differentiation and metabolic effectors.
    Liu W; Capuco AV; Romagnolo DF
    Exp Biol Med (Maywood); 2006 May; 231(5):599-610. PubMed ID: 16636309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arginase in lactating bovine mammary glands: implications in proline synthesis.
    Basch JJ; Wickham ED; Farrell HM
    J Dairy Sci; 1997 Dec; 80(12):3241-8. PubMed ID: 9436105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential effects of polyamine on the cytosolic and mitochondrial NADP-isocitrate dehydrogenases.
    Murakami K; Haneda M; Iwata S; Yoshino M
    Biofactors; 2012; 38(5):365-71. PubMed ID: 22674798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple molecular forms of glucose-6-phosphate dehydrogenase in normal, preneoplastic, and neoplastic mammary tissues of mice.
    Hilf R; Ickowicz R; Bartley JC; Abraham S
    Cancer Res; 1975 Aug; 35(8):2109-16. PubMed ID: 238737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced proteolysis of glucose-6-phosphate dehydrogenase in the presence of palmitoyl coenzyme A.
    Orstan A; Gafni A
    Biochem Int; 1990 Aug; 21(5):915-21. PubMed ID: 2256954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of palmitoyl CoA of EDTA- and Mg2+-ATPase of heavy meromyosin from rabbit skeletal muscle.
    Fujiwara A; Fujisaki H; Asai H; Yasumasu I
    J Biochem; 1981 Sep; 90(3):757-63. PubMed ID: 6118360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decarboxylation of malonyl-CoA by lactating bovine mammary fatty acid synthase.
    Svoronos S; Kumar S
    Comp Biochem Physiol B; 1988; 90(1):179-85. PubMed ID: 3396325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.