These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 7639538)
1. Characterization of the substrate specificity of sucrose-phosphate synthase protein kinase. McMichael RW; Kochansky J; Klein RR; Huber SC Arch Biochem Biophys; 1995 Aug; 321(1):71-5. PubMed ID: 7639538 [TBL] [Abstract][Full Text] [Related]
2. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities. Toroser D; Huber SC Arch Biochem Biophys; 1998 Jul; 355(2):291-300. PubMed ID: 9675040 [TBL] [Abstract][Full Text] [Related]
3. Identification of the major regulatory phosphorylation site in sucrose-phosphate synthase. McMichael RW; Klein RR; Salvucci ME; Huber SC Arch Biochem Biophys; 1993 Dec; 307(2):248-52. PubMed ID: 8274010 [TBL] [Abstract][Full Text] [Related]
4. Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves. Toroser D; Huber SC Plant Physiol; 1997 Jul; 114(3):947-55. PubMed ID: 9232876 [TBL] [Abstract][Full Text] [Related]
5. Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/P-4. Huang JZ; Hardin SC; Huber SC Arch Biochem Biophys; 2001 Sep; 393(1):61-6. PubMed ID: 11516161 [TBL] [Abstract][Full Text] [Related]
6. Soybean nodule sucrose synthase (nodulin-100): further analysis of its phosphorylation using recombinant and authentic root-nodule enzymes. Zhang XQ; Lund AA; Sarath G; Cerny RL; Roberts DM; Chollet R Arch Biochem Biophys; 1999 Nov; 371(1):70-82. PubMed ID: 10525291 [TBL] [Abstract][Full Text] [Related]
7. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue. Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. Toroser D; McMichael R; Krause KP; Kurreck J; Sonnewald U; Stitt M; Huber SC Plant J; 1999 Feb; 17(4):407-13. PubMed ID: 10205897 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase. Quinn GB; Trimboli AJ; Prosser IM; Barber MJ Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of sucrose synthase from maize seedlings. Lindblom S; Ek P; Muszyńska G; Ek B; Szczegielniak J; Engström L Acta Biochim Pol; 1997; 44(4):809-17. PubMed ID: 9584864 [TBL] [Abstract][Full Text] [Related]
11. Use of a synthetic peptide as a selective substrate for glycogen synthase kinase 3. Wang QM; Roach PJ; Fiol CJ Anal Biochem; 1994 Aug; 220(2):397-402. PubMed ID: 7978284 [TBL] [Abstract][Full Text] [Related]
12. D-ribose-5-phosphate isomerase from spinach: heterologous overexpression, purification, characterization, and site-directed mutagenesis of the recombinant enzyme. Jung CH; Hartman FC; Lu TY; Larimer FW Arch Biochem Biophys; 2000 Jan; 373(2):409-17. PubMed ID: 10620366 [TBL] [Abstract][Full Text] [Related]
13. Identification of elements critical for phosphorylation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by adenosine monophosphate-activated protein kinase: protein engineering of the naturally nonphosphorylatable 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pseudomonas mevalonii. Friesen JA; Rodwell VW Biochemistry; 1997 Feb; 36(5):1157-62. PubMed ID: 9033407 [TBL] [Abstract][Full Text] [Related]
14. A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase. Schumacher AM; Schavocky JP; Velentza AV; Mirzoeva S; Watterson DM Biochemistry; 2004 Jun; 43(25):8116-24. PubMed ID: 15209507 [TBL] [Abstract][Full Text] [Related]
15. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform. Rolland N; Droux M; Lebrun M; Douce R Arch Biochem Biophys; 1993 Jan; 300(1):213-22. PubMed ID: 8424655 [TBL] [Abstract][Full Text] [Related]
16. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Sugden C; Donaghy PG; Halford NG; Hardie DG Plant Physiol; 1999 May; 120(1):257-74. PubMed ID: 10318703 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of synthetic peptides by a CDPK and plant SNF1-related protein kinase. Influence of proline and basic amino acid residues at selected positions. Huang JZ; Huber SC Plant Cell Physiol; 2001 Oct; 42(10):1079-87. PubMed ID: 11673623 [TBL] [Abstract][Full Text] [Related]
19. An integrated strategy for identification and relative quantification of site-specific protein phosphorylation using liquid chromatography coupled to MS2/MS3. Wolschin F; Lehmann U; Glinski M; Weckwerth W Rapid Commun Mass Spectrom; 2005; 19(24):3626-32. PubMed ID: 16287031 [TBL] [Abstract][Full Text] [Related]
20. Plant calreticulin is specifically and efficiently phosphorylated by protein kinase CK2. Baldan B; Navazio L; Friso A; Mariani P; Meggio F Biochem Biophys Res Commun; 1996 Apr; 221(3):498-502. PubMed ID: 8629990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]