BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 7639539)

  • 21. Mouse liver NAD(P)H:quinone acceptor oxidoreductase: protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in Escherichia coli, and enzyme activity analysis.
    Chen S; Clarke PE; Martino PA; Deng PS; Yeh CH; Lee TD; Prochaska HJ; Talalay P
    Protein Sci; 1994 Aug; 3(8):1296-304. PubMed ID: 7527260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is the NAD(P)H:flavin oxidoreductase from Escherichia coli a member of the ferredoxin-NADP+ reductase family?. Evidence for the catalytic role of serine 49 residue.
    Nivière V; Fieschi F; Décout JL; Fontecave M
    J Biol Chem; 1996 Jul; 271(28):16656-61. PubMed ID: 8663185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus.
    Sena FV; Sousa FM; Oliveira ASF; Soares CM; Catarino T; Pereira MM
    Redox Biol; 2018 Jun; 16():209-214. PubMed ID: 29524843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: site-directed mutagenesis and kinetic analyses.
    Nakanishi M; Kakumoto M; Matsuura K; Deyashiki Y; Tanaka N; Nonaka T; Mitsui Y; Hara A
    J Biochem; 1996 Aug; 120(2):257-63. PubMed ID: 8889808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity.
    Barber MJ; Desai SK; Marohnic CC
    Arch Biochem Biophys; 2001 Oct; 394(1):99-110. PubMed ID: 11566032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NAD(P)H:menadione oxidoreductase of the amitochondriate eukaryote Giardia lamblia: a simpler homologue of the vertebrate enzyme.
    Sánchez LB; Elmendorf H; Nash TE; Müller M
    Microbiology (Reading); 2001 Mar; 147(Pt 3):561-570. PubMed ID: 11238963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28.
    Trimmer EE; Ballou DP; Ludwig ML; Matthews RG
    Biochemistry; 2001 May; 40(21):6216-26. PubMed ID: 11371182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular characterization of binding of substrates and inhibitors to DT-diaphorase: combined approach involving site-directed mutagenesis, inhibitor-binding analysis, and computer modeling.
    Chen S; Wu K; Zhang D; Sherman M; Knox R; Yang CS
    Mol Pharmacol; 1999 Aug; 56(2):272-8. PubMed ID: 10419545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of lipoamide dehydrogenase altered by site-directed mutagenesis at a key residue (I184Y) in the pyridine nucleotide binding domain.
    Maeda-Yorita K; Russell GC; Guest JR; Massey V; Williams CH
    Biochemistry; 1991 Dec; 30(51):11788-95. PubMed ID: 1751496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-directed mutagenesis of human dihydrolipoamide dehydrogenase: role of lysine-54 and glutamate-192 in stabilizing the thiolate-FAD intermediate.
    Liu TC; Hong YS; Korotchkina LG; Vettakkorumakankav NN; Patel MS
    Protein Expr Purif; 1999 Jun; 16(1):27-39. PubMed ID: 10336857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subunit functional studies of NAD(P)H:quinone oxidoreductase with a heterodimer approach.
    Cui K; Lu AY; Yang CS
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):1043-7. PubMed ID: 7862630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase.
    Koch K; Hromic A; Sorokina M; Strandback E; Reisinger M; Gruber K; Macheroux P
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1046-1056. PubMed ID: 28499769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus.
    Kitazume Y; Mutoh M; Shiraki M; Koyama N
    Res Microbiol; 2006 Dec; 157(10):956-9. PubMed ID: 17097855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.