BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 7639709)

  • 1. Fluorescent, short-chain C6-NBD-sphingomyelin, but not C6-NBD-glucosylceramide, is subject to extensive degradation in the plasma membrane: implications for signal transduction related to cell differentiation.
    Kok JW; Babia T; Klappe K; Hoekstra D
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):905-12. PubMed ID: 7639709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells.
    van IJzendoorn SC; Zegers MM; Kok JW; Hoekstra D
    J Cell Biol; 1997 Apr; 137(2):347-57. PubMed ID: 9128247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts.
    Koval M; Pagano RE
    J Cell Biol; 1990 Aug; 111(2):429-42. PubMed ID: 2380243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells: a role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids.
    van IJzendoorn SC; Hoekstra D
    J Cell Biol; 1998 Aug; 142(3):683-96. PubMed ID: 9700158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Golgi staining by two fluorescent ceramide analogues in cultured fibroblasts requires metabolism.
    Pütz U; Schwarzmann G
    Eur J Cell Biol; 1995 Oct; 68(2):113-21. PubMed ID: 8575458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts.
    Koval M; Pagano RE
    J Cell Biol; 1989 Jun; 108(6):2169-81. PubMed ID: 2738091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of biosynthetic sphingolipids from Golgi to plasma membrane in HT29 cells: involvement of different carrier vesicle populations.
    Babia T; Kok JW; van der Haar M; Kalicharan R; Hoekstra D
    Eur J Cell Biol; 1994 Apr; 63(2):172-81. PubMed ID: 8082643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential metabolism and trafficking of sphingolipids in differentiated versus undifferentiated HT29 cells.
    Babia T; Kok JW; Hulstaert C; de Weerd H; Hoekstra D
    Int J Cancer; 1993 Jul; 54(5):839-45. PubMed ID: 8325709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase.
    van Helvoort A; van't Hof W; Ritsema T; Sandra A; van Meer G
    J Biol Chem; 1994 Jan; 269(3):1763-9. PubMed ID: 8294425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent analogues of plasma membrane sphingolipids are sorted to different intracellular compartments in astrocytes; Harmful effects of chronic ethanol exposure on sphingolipid trafficking and metabolism.
    Tomás M; Durán JM; Lázaro-Diéguez F; Babià T; Renau-Piqueras J; Egea G
    FEBS Lett; 2004 Apr; 563(1-3):59-65. PubMed ID: 15063723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorting of sphingolipids in the endocytic pathway of HT29 cells.
    Kok JW; Babia T; Hoekstra D
    J Cell Biol; 1991 Jul; 114(2):231-9. PubMed ID: 2071671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells.
    van Genderen I; van Meer G
    J Cell Biol; 1995 Nov; 131(3):645-54. PubMed ID: 7593186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane.
    Lipsky NG; Pagano RE
    J Cell Biol; 1985 Jan; 100(1):27-34. PubMed ID: 3965473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme.
    Hashimoto N; Matsumoto I; Takahashi H; Ashikawa H; Nakamura H; Murayama T
    Neuropharmacology; 2016 Nov; 110(Pt A):458-469. PubMed ID: 27539961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue.
    Lipsky NG; Pagano RE
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2608-12. PubMed ID: 6573674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurocholate induces pericanalicular localization of C6-NBD-ceramide in isolated hepatocyte couplets.
    Crawford JM; Vinter DW; Gollan JL
    Am J Physiol; 1991 Jan; 260(1 Pt 1):G119-32. PubMed ID: 1987800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to Characterize Synthesis and Degradation of Sphingomyelin at the Plasma Membrane and Its Impact on Lipid Raft Dynamics.
    Nikolova-Karakashian M
    Methods Mol Biol; 2021; 2187():113-129. PubMed ID: 32770504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocytosis of NBD-sphingolipids in neurons: exclusion from degradative compartments and transport to the Golgi complex.
    Babià T; Ledesma MD; Saffrich R; Kok JW; Dotti CG; Egea G
    Traffic; 2001 Jun; 2(6):395-405. PubMed ID: 11389767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of sphingomyelin to the cell surface is inhibited by brefeldin A and in mitosis, where C6-NBD-sphingomyelin is translocated across the plasma membrane by a multidrug transporter activity.
    van Helvoort A; Giudici ML; Thielemans M; van Meer G
    J Cell Sci; 1997 Jan; 110 ( Pt 1)():75-83. PubMed ID: 9010786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells.
    van Meer G; Stelzer EH; Wijnaendts-van-Resandt RW; Simons K
    J Cell Biol; 1987 Oct; 105(4):1623-35. PubMed ID: 3667693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.