These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 7640360)

  • 1. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response.
    Fahrendorf T; Ni W; Shorrosh BS; Dixon RA
    Plant Mol Biol; 1995 Aug; 28(5):885-900. PubMed ID: 7640360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis.
    Paiva NL; Edwards R; Sun YJ; Hrazdina G; Dixon RA
    Plant Mol Biol; 1991 Oct; 17(4):653-67. PubMed ID: 1912490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress responses in alfalfa (Medicago sativa L.) 12. Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants.
    Gowri G; Paiva NL; Dixon RA
    Plant Mol Biol; 1991 Sep; 17(3):415-29. PubMed ID: 1715786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenlpropanoid pathway genes in elicitor-induced cell suspension cultures.
    Ni W; Fahrendorf T; Ballance GM; Lamb CJ; Dixon RA
    Plant Mol Biol; 1996 Feb; 30(3):427-38. PubMed ID: 8605296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis.
    Guo L; Paiva NL
    Arch Biochem Biophys; 1995 Jul; 320(2):353-60. PubMed ID: 7625843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase.
    He XZ; Reddy JT; Dixon RA
    Plant Mol Biol; 1998 Jan; 36(1):43-54. PubMed ID: 9484461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase isoform genes in suspension-cultured Arabidopsis thaliana cells.
    Yin Y; Ashihara H
    Z Naturforsch C J Biosci; 2008; 63(9-10):713-20. PubMed ID: 19040112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants.
    Oommen A; Dixon RA; Paiva NL
    Plant Cell; 1994 Dec; 6(12):1789-1803. PubMed ID: 7866024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress responses in alfalfa (Medicago sativa L.). XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450.
    Fahrendorf T; Dixon RA
    Arch Biochem Biophys; 1993 Sep; 305(2):509-15. PubMed ID: 8373188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots.
    Baldridge GD; O'Neill NR; Samac DA
    Plant Mol Biol; 1998 Dec; 38(6):999-1010. PubMed ID: 9869406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.
    Corpas FJ; Aguayo-Trinidad S; Ogawa T; Yoshimura K; Shigeoka S
    J Plant Physiol; 2016 Mar; 192():81-9. PubMed ID: 26878367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive oxidation of key pentose phosphate pathway enzymes modulates the fate of intermediates and NAPDH production.
    Reyes JS; Cortés-Ríos J; Fuentes-Lemus E; Rodriguez-Fernandez M; Davies MJ; López-Alarcón C
    Free Radic Biol Med; 2024 Sep; 222():505-518. PubMed ID: 38848786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of differential peroxyl radical-induced inactivation of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase for the pentose phosphate pathway.
    Reyes JS; Fuentes-Lemus E; Figueroa JD; Rojas J; Fierro A; Arenas F; Hägglund PM; Davies MJ; López-Alarcón C
    Sci Rep; 2022 Dec; 12(1):21191. PubMed ID: 36476946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteroexpression and functional characterization of glucose 6-phosphate dehydrogenase from industrial
    Guo H; Han J; Wu J; Chen H
    J Microbiol Biotechnol; 2019 Apr; 29(4):577-586. PubMed ID: 30786701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress.
    Juhnke H; Krems B; Kötter P; Entian KD
    Mol Gen Genet; 1996 Sep; 252(4):456-64. PubMed ID: 8879247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative pentose phosphate pathway and pyridine nucleotides in relation to heartwood formation in Robinia pseudoacacia L.
    Magel EA; Hillinger C; Wagner T; Höll W
    Phytochemistry; 2001 Aug; 57(7):1061-8. PubMed ID: 11430979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase abrogate p53 induced apoptosis in a yeast model: Possible implications for apoptosis resistance in cancer cells.
    Redhu AK; Bhat JP
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129504. PubMed ID: 31862471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes.
    Corpas FJ; Barroso JB; Sandalio LM; Distefano S; Palma JM; Lupiáñez JA; Del Río LA
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):777-84. PubMed ID: 9480890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.