These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 7641701)
1. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage. Wu Z; Chaconas G EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701 [TBL] [Abstract][Full Text] [Related]
2. A domain sharing model for active site assembly within the Mu A tetramer during transposition: the enhancer may specify domain contributions. Yang JY; Kim K; Jayaram M; Harshey RM EMBO J; 1995 May; 14(10):2374-84. PubMed ID: 7774595 [TBL] [Abstract][Full Text] [Related]
3. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase. Yang JY; Jayaram M; Harshey RM Genes Dev; 1995 Oct; 9(20):2545-55. PubMed ID: 7590234 [TBL] [Abstract][Full Text] [Related]
4. Characterization of functionally important sites in the bacteriophage Mu transposase protein. Ulycznyj PI; Forghani F; DuBow MS Mol Gen Genet; 1994 Feb; 242(3):272-9. PubMed ID: 8107674 [TBL] [Abstract][Full Text] [Related]
5. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition. Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730 [TBL] [Abstract][Full Text] [Related]
6. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction. Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286 [TBL] [Abstract][Full Text] [Related]
7. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers. Yang JY; Jayaram M; Harshey RM Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a region in phage Mu transposase that is involved in interaction with the Mu B protein. Wu Z; Chaconas G J Biol Chem; 1994 Nov; 269(46):28829-33. PubMed ID: 7961840 [TBL] [Abstract][Full Text] [Related]
9. Identification of residues in the Mu transposase essential for catalysis. Baker TA; Luo L Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831 [TBL] [Abstract][Full Text] [Related]
10. A subsequence-specific DNA-binding domain resides in the 13 kDa amino terminus of the bacteriophage Mu transposase protein. Tolias PP; DuBow MS J Mol Recognit; 1989 Apr; 1(4):172-8. PubMed ID: 2561072 [TBL] [Abstract][Full Text] [Related]
11. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer. Kim K; Namgoong SY; Jayaram M; Harshey RM J Biol Chem; 1995 Jan; 270(3):1472-9. PubMed ID: 7836417 [TBL] [Abstract][Full Text] [Related]
12. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Savilahti H; Mizuuchi K Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279 [TBL] [Abstract][Full Text] [Related]
13. Mutational analysis of the att DNA-binding domain of phage Mu transposase. Kim K; Harshey RM Nucleic Acids Res; 1995 Oct; 23(19):3937-43. PubMed ID: 7479039 [TBL] [Abstract][Full Text] [Related]
14. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. Kuo CF; Zou AH; Jayaram M; Getzoff E; Harshey R EMBO J; 1991 Jun; 10(6):1585-91. PubMed ID: 1851088 [TBL] [Abstract][Full Text] [Related]
15. Transposase contacts with mu DNA ends. Zou AH; Leung PC; Harshey RM J Biol Chem; 1991 Oct; 266(30):20476-82. PubMed ID: 1657926 [TBL] [Abstract][Full Text] [Related]
16. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains. Leung PC; Harshey RM J Mol Biol; 1991 May; 219(2):189-99. PubMed ID: 1645409 [TBL] [Abstract][Full Text] [Related]
17. Complete transposition requires four active monomers in the mu transposase tetramer. Baker TA; Kremenstova E; Luo L Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906 [TBL] [Abstract][Full Text] [Related]
18. Role of the A protein-binding sites in the in vitro transposition of mu DNA. A complex circuit of interactions involving the mu ends and the transpositional enhancer. Allison RG; Chaconas G J Biol Chem; 1992 Oct; 267(28):19963-70. PubMed ID: 1328189 [TBL] [Abstract][Full Text] [Related]
19. Division of labor among monomers within the Mu transposase tetramer. Baker TA; Mizuuchi M; Savilahti H; Mizuuchi K Cell; 1993 Aug; 74(4):723-33. PubMed ID: 8395353 [TBL] [Abstract][Full Text] [Related]
20. Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome. Mariconda S; Namgoong SY; Yoon KH; Jiang H; Harshey RM J Biosci; 2000 Dec; 25(4):347-60. PubMed ID: 11120587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]