BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 7641853)

  • 1. Protein associated with human lens 'native' membrane during aging and cataract formation.
    Chandrasekher G; Cenedella RJ
    Exp Eye Res; 1995 Jun; 60(6):707-17. PubMed ID: 7641853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of a lens 'native' plasma membrane fraction and its associated crystallins.
    Fleschner CR; Cenedella RJ
    Curr Eye Res; 1992 Aug; 11(8):739-52. PubMed ID: 1424720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective association of crystallins with lens 'native' membrane during dynamic cataractogenesis.
    Cenedella RJ; Fleschner CR
    Curr Eye Res; 1992 Aug; 11(8):801-15. PubMed ID: 1424724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lens proteins in intumescent cataract.
    Ringens PJ; Bistervels B; Hoenders HJ; Wollensak J
    Ophthalmic Res; 1986; 18(2):61-7. PubMed ID: 3737113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein changes in the human lens during development of senile nuclear cataract.
    Kramps HA; Hoenders HJ; Wollensak J
    Biochim Biophys Acta; 1976 May; 434(1):32-43. PubMed ID: 938670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change of water-soluble-protein, urea-soluble-protein and membrane intrinsic protein in human senile cataract.
    Zhao H; Hu S; Ren X; Yang J; Sun L
    Yan Ke Xue Bao; 1995 Sep; 11(3):124-7. PubMed ID: 8758837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High capacity binding of alpha crystallins to various bovine lens membrane preparations.
    Cenedella RJ; Chandrasekher G
    Curr Eye Res; 1993 Nov; 12(11):1025-38. PubMed ID: 8306713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens.
    Kodama T; Kodama T; Horwitz J; Takemoto L
    Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of aging and cataract formation on the trypsin inhibitor activity of human lens.
    Srivastava OP; Ortwerth BJ
    Exp Eye Res; 1989 Jan; 48(1):25-36. PubMed ID: 2920782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.