These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 7641854)
21. Stability of normal and aging lens gamma crystallins. Mandal K; Lerman S Ophthalmic Res; 1993; 25(5):295-301. PubMed ID: 8259262 [TBL] [Abstract][Full Text] [Related]
22. Interaction of lens alpha and gamma crystallins during aging of the bovine lens. Peterson J; Radke G; Takemoto L Exp Eye Res; 2005 Dec; 81(6):680-9. PubMed ID: 15967431 [TBL] [Abstract][Full Text] [Related]
23. Involvement of the N-terminal region in alpha-crystallin-lens membrane recognition. Ifeanyi F; Takemoto L Exp Eye Res; 1991 Sep; 53(3):305-8. PubMed ID: 1936166 [TBL] [Abstract][Full Text] [Related]
24. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses. Thampi P; Hassan A; Smith JB; Abraham EC Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3265-72. PubMed ID: 12356833 [TBL] [Abstract][Full Text] [Related]
25. Deamidation of specific glutamine residues from alpha-A crystallin during aging of the human lens. Takemoto L; Boyle D Biochemistry; 1998 Sep; 37(39):13681-5. PubMed ID: 9753455 [TBL] [Abstract][Full Text] [Related]
26. Supramolecular order within the lens: 1H NMR spectroscopic evidence for specific crystallin-crystallin interactions. Cooper PG; Aquilina JA; Truscott RJ; Carver JA Exp Eye Res; 1994 Nov; 59(5):607-16. PubMed ID: 9492762 [TBL] [Abstract][Full Text] [Related]
27. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts. Yan H; Lou MF; Fernando MR; Harding JJ Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401 [TBL] [Abstract][Full Text] [Related]
28. The photochemical attachment of the O-glucoside of 3-hydroxykynurenine to alpha-crystallin: a model for lenticular aging. Dillon J; Skonieczna M; Mandal K; Paik D Photochem Photobiol; 1999 Feb; 69(2):248-53. PubMed ID: 10048317 [TBL] [Abstract][Full Text] [Related]
29. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Heys KR; Friedrich MG; Truscott RJ Aging Cell; 2007 Dec; 6(6):807-15. PubMed ID: 17973972 [TBL] [Abstract][Full Text] [Related]
30. Changes in crystallin expression during transdifferentiation and subsequent ageing of embryonic chick neural retina in vitro: comparison with lens epithelium. Patek CE; Jeanny JC; Clayton RM Exp Eye Res; 1993 Nov; 57(5):527-37. PubMed ID: 8282039 [TBL] [Abstract][Full Text] [Related]
31. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens. Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419 [TBL] [Abstract][Full Text] [Related]
32. Age-related degradation of betaA3/A1-crystallin in human lenses. Srivastava OP; Srivastava K; Harrington V Biochem Biophys Res Commun; 1999 May; 258(3):632-8. PubMed ID: 10329436 [TBL] [Abstract][Full Text] [Related]
33. Age-related changes in the structural proteins of human lens. Satoh K Exp Eye Res; 1972 Jul; 14(1):53-7. PubMed ID: 5039847 [No Abstract] [Full Text] [Related]
34. Normal human lens - the distribution of protein. Fagerholm PP; Philipson BT; Lindström B Exp Eye Res; 1981 Dec; 33(6):615-20. PubMed ID: 7318958 [No Abstract] [Full Text] [Related]
35. [Aging effects of soluble proteins and high molecular weight protein aggregates of human normal lenses (author's transl)]. Kabasawa I; Kabasawa M; Yoshida H; Sanada Y; Yokota T; Sakaue E Nippon Ganka Gakkai Zasshi; 1982; 86(4):464-7. PubMed ID: 7113833 [No Abstract] [Full Text] [Related]
36. Effects of age and genetic growth rate on the crystallin composition of the chick lens. Patek C; Head M; Clayton R Int J Dev Biol; 1994 Dec; 38(4):717-24. PubMed ID: 7779693 [TBL] [Abstract][Full Text] [Related]
37. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Wang X; Garcia CM; Shui YB; Beebe DC Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068 [TBL] [Abstract][Full Text] [Related]
38. The conformation formed by the domain after alanine-155 induces inversion of aspartic acid-151 in alpha A-crystallin from aged human lenses. Fujii N; Momose Y; Yamasaki M; Yamagaki T; Nakanishi H; Uemura T; Takita M; Ishii N Biochem Biophys Res Commun; 1997 Oct; 239(3):918-23. PubMed ID: 9367870 [TBL] [Abstract][Full Text] [Related]
39. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
40. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses. Srivastava OP; Srivastava K Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]