These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7641882)

  • 1. Three-dimensional architecture of the skeletal muscle ryanodine receptor.
    Wagenknecht T; Radermacher M
    FEBS Lett; 1995 Aug; 369(1):43-6. PubMed ID: 7641882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle.
    Radermacher M; Rao V; Grassucci R; Frank J; Timerman AP; Fleischer S; Wagenknecht T
    J Cell Biol; 1994 Oct; 127(2):411-23. PubMed ID: 7929585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ryanodine receptors: structure and macromolecular interactions.
    Wagenknecht T; Radermacher M
    Curr Opin Struct Biol; 1997 Apr; 7(2):258-65. PubMed ID: 9094329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of calmodulin binding sites on the ryanodine receptor from skeletal muscle by electron microscopy.
    Wagenknecht T; Berkowitz J; Grassucci R; Timerman AP; Fleischer S
    Biophys J; 1994 Dec; 67(6):2286-95. PubMed ID: 7696469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryoelectron microscopy resolves FK506-binding protein sites on the skeletal muscle ryanodine receptor.
    Wagenknecht T; Grassucci R; Berkowitz J; Wiederrecht GJ; Xin HB; Fleischer S
    Biophys J; 1996 Apr; 70(4):1709-15. PubMed ID: 8785329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM of the native structure of the calcium release channel/ryanodine receptor from sarcoplasmic reticulum.
    Radermacher M; Wagenknecht T; Grassucci R; Frank J; Inui M; Chadwick C; Fleischer S
    Biophys J; 1992 Apr; 61(4):936-40. PubMed ID: 1316182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel.
    Serysheva II; Orlova EV; Chiu W; Sherman MB; Hamilton SL; van Heel M
    Nat Struct Biol; 1995 Jan; 2(1):18-24. PubMed ID: 7719847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle.
    Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F
    Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locations of calmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscle ryanodine receptor.
    Wagenknecht T; Radermacher M; Grassucci R; Berkowitz J; Xin HB; Fleischer S
    J Biol Chem; 1997 Dec; 272(51):32463-71. PubMed ID: 9405457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and morphological features of skeletal muscle from mutant mice lacking both type 1 and type 3 ryanodine receptors.
    Ikemoto T; Komazaki S; Takeshima H; Nishi M; Noda T; Iino M; Endo M
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):305-12. PubMed ID: 9192302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native structure and arrangement of inositol-1,4,5-trisphosphate receptor molecules in bovine cerebellar Purkinje cells as studied by quick-freeze deep-etch electron microscopy.
    Katayama E; Funahashi H; Michikawa T; Shiraishi T; Ikemoto T; Iino M; Mikoshiba K
    EMBO J; 1996 Sep; 15(18):4844-51. PubMed ID: 8890158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of electron microscopy and single-particle techniques to the determination of the ryanodine receptor three-dimensional structure.
    Samsó M; Wagenknecht T
    J Struct Biol; 1998; 121(2):172-80. PubMed ID: 9615436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle.
    Sun XH; Protasi F; Takahashi M; Takeshima H; Ferguson DG; Franzini-Armstrong C
    J Cell Biol; 1995 May; 129(3):659-71. PubMed ID: 7730402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor).
    Tripathy A; Xu L; Mann G; Meissner G
    Biophys J; 1995 Jul; 69(1):106-19. PubMed ID: 7669888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors.
    Fruen BR; Kane PK; Mickelson JR; Louis CF
    Biophys J; 1996 Nov; 71(5):2522-30. PubMed ID: 8913591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM.
    Samsó M; Wagenknecht T; Allen PD
    Nat Struct Mol Biol; 2005 Jun; 12(6):539-44. PubMed ID: 15908964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electron microscopy for the studies of membrane transport proteins].
    Katayama E
    Nihon Rinsho; 1996 Mar; 54(3):718-24. PubMed ID: 8904228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function?
    Sutko JL; Airey JA
    Physiol Rev; 1996 Oct; 76(4):1027-71. PubMed ID: 8874493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.
    Bhat MB; Zhao J; Takeshima H; Ma J
    Biophys J; 1997 Sep; 73(3):1329-36. PubMed ID: 9284301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of amino acids 1641-2437 from the foot region of skeletal muscle ryanodine receptor alters the conduction properties of the Ca release channel.
    Bhat MB; Zhao J; Hayek S; Freeman EC; Takeshima H; Ma J
    Biophys J; 1997 Sep; 73(3):1320-8. PubMed ID: 9284300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.