These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 7642191)
1. The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition. Kang WJ; Shiu JR; Cheng CK; Lai JS; Tsao HW; Kuo TS IEEE Trans Biomed Eng; 1995 Aug; 42(8):777-85. PubMed ID: 7642191 [TBL] [Abstract][Full Text] [Related]
2. A comparative analysis of various EMG pattern recognition methods. Kang WJ; Cheng CK; Lai JS; Shiu JR; Kuo TS Med Eng Phys; 1996 Jul; 18(5):390-5. PubMed ID: 8818137 [TBL] [Abstract][Full Text] [Related]
3. The effect of electrode arrangement on spectral distance measures for discrimination of EMG signals. Kang WJ; Shiu JR; Cheng CK; Lai JS; Tsao HW; Kuo TS IEEE Trans Biomed Eng; 1997 Oct; 44(10):1020-3. PubMed ID: 9311170 [TBL] [Abstract][Full Text] [Related]
4. The comparison of electromyographic pattern classifications with active and passive electrodes. Chiou YH; Luh JJ; Chen SC; Lai JS; Kuo TS Med Eng Phys; 2004 Sep; 26(7):605-10. PubMed ID: 15271288 [TBL] [Abstract][Full Text] [Related]
5. Real-time implementation of electromyogram pattern recognition as a control command of man-machine interface. Chang GC; Kang WJ; Luh JJ; Cheng CK; Lai JS; Chen JJ; Kuo TS Med Eng Phys; 1996 Oct; 18(7):529-37. PubMed ID: 8892237 [TBL] [Abstract][Full Text] [Related]
6. Use of the discriminant Fourier-derived cepstrum with feature-level post-processing for surface electromyographic signal classification. Chen X; Zhu X; Zhang D Physiol Meas; 2009 Dec; 30(12):1399-413. PubMed ID: 19887720 [TBL] [Abstract][Full Text] [Related]
7. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design. Huan NJ; Palaniappan R J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633 [TBL] [Abstract][Full Text] [Related]
8. Classification of EMG signals using wavelet neural network. Subasi A; Yilmaz M; Ozcalik HR J Neurosci Methods; 2006 Sep; 156(1-2):360-7. PubMed ID: 16621003 [TBL] [Abstract][Full Text] [Related]
9. Parametric representation and screening of knee joint vibroarthrographic signals. Rangayyan RM; Krishnan S; Bell GD; Frank CB; Ladly KO IEEE Trans Biomed Eng; 1997 Nov; 44(11):1068-74. PubMed ID: 9353986 [TBL] [Abstract][Full Text] [Related]
10. Multivariate AR modeling of electromyography for the classification of upper arm movements. Hu X; Nenov V Clin Neurophysiol; 2004 Jun; 115(6):1276-87. PubMed ID: 15134694 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of PCA in classification of multichannel EMG signals. Geethanjali P Australas Phys Eng Sci Med; 2015 Jun; 38(2):331-43. PubMed ID: 25860845 [TBL] [Abstract][Full Text] [Related]
12. A software package for the decomposition of long-term multichannel EMG signals using wavelet coefficients. Zennaro D; Wellig P; Koch VM; Moschytz GS; Läubli T IEEE Trans Biomed Eng; 2003 Jan; 50(1):58-69. PubMed ID: 12617525 [TBL] [Abstract][Full Text] [Related]
13. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings. Ince NF; Arica S; Tewfik A J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207 [TBL] [Abstract][Full Text] [Related]
14. Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions. Farina D; Pozzo M; Merlo E; Bottin A; Merletti R IEEE Trans Biomed Eng; 2004 Aug; 51(8):1383-93. PubMed ID: 15311823 [TBL] [Abstract][Full Text] [Related]
15. An exploratory study to design a novel hand movement identification system. Khezri M; Jahed M Comput Biol Med; 2009 May; 39(5):433-42. PubMed ID: 19342012 [TBL] [Abstract][Full Text] [Related]
16. EMG-based speech recognition using hidden markov models with global control variables. Lee KS IEEE Trans Biomed Eng; 2008 Mar; 55(3):930-40. PubMed ID: 18334384 [TBL] [Abstract][Full Text] [Related]
17. Spherical classification of wavelet transformed EMG intensity patterns. von Tscharner V J Electromyogr Kinesiol; 2009 Oct; 19(5):e334-44. PubMed ID: 18710816 [TBL] [Abstract][Full Text] [Related]
18. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. Chu JU; Moon I; Mun MS IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328 [TBL] [Abstract][Full Text] [Related]
19. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses. Li G; Li Y; Yu L; Geng Y Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972 [TBL] [Abstract][Full Text] [Related]
20. A discriminant bispectrum feature for surface electromyogram signal classification. Chen X; Zhu X; Zhang D Med Eng Phys; 2010 Mar; 32(2):126-35. PubMed ID: 19955011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]