BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 7642284)

  • 1. Entry and survival of Leishmania amazonensis amastigotes within phagolysosome-like vacuoles that shelter Coxiella burnetii in Chinese hamster ovary cells.
    Veras PS; Moulia C; Dauguet C; Tunis CT; Thibon M; Rabinovitch M
    Infect Immun; 1995 Sep; 63(9):3502-6. PubMed ID: 7642284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion between large phagocytic vesicles: targeting of yeast and other particulates to phagolysosomes that shelter the bacterium Coxiella burnetii or the protozoan Leishmania amazonensis in Chinese hamster ovary cells.
    Veras PS; de Chastellier C; Moreau MF; Villiers V; Thibon M; Mattei D; Rabinovitch M
    J Cell Sci; 1994 Nov; 107 ( Pt 11)():3065-76. PubMed ID: 7699006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cohabitation of Leishmania amazonensis and Coxiella burnetii.
    Rabinovitch M; Veras PS
    Trends Microbiol; 1996 Apr; 4(4):158-61. PubMed ID: 8728610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: live imaging of coinfected macrophages.
    Real F; Mortara RA; Rabinovitch M
    PLoS Negl Trop Dis; 2010 Dec; 4(12):e905. PubMed ID: 21151877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of chimeric phagosomes that shelter Mycobacterium avium and Coxiella burnetii (phase II) in doubly infected mouse macrophages: an ultrastructural study.
    de Chastellier C; Thibon M; Rabinovitch M
    Eur J Cell Biol; 1999 Aug; 78(8):580-92. PubMed ID: 10494865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival of Trypanosoma cruzi metacyclic trypomastigotes within Coxiella burnetii vacuoles: differentiation and replication within an acidic milieu.
    Andreoli WK; Taniwaki NN; Mortara RA
    Microbes Infect; 2006 Jan; 8(1):172-82. PubMed ID: 16182585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanosoma cruzi cell invasion and traffic: influence of Coxiella burnetii and pH in a comparative study between distinct infective forms.
    Fernandes MC; L'Abbate C; Kindro Andreoli W; Mortara RA
    Microb Pathog; 2007 Jul; 43(1):22-36. PubMed ID: 17448629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cAMP effectors, Rap2b and EPAC, are involved in the regulation of the development of the Coxiella burnetii containing vacuole by altering the fusogenic capacity of the vacuole.
    Mansilla Pareja ME; Gaurón MC; Robledo E; Aguilera MO; Colombo MI
    PLoS One; 2019; 14(2):e0212202. PubMed ID: 30763357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leishmania (L.) amazonensis: fusion between parasitophorous vacuoles in infected bone-marrow derived mouse macrophages.
    Real F; Pouchelet M; Rabinovitch M
    Exp Parasitol; 2008 May; 119(1):15-23. PubMed ID: 18346736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of Leishmania amazonensis parasitophorous vacuoles with phagosomes containing zymosan particles: cinemicrographic and ultrastructural observations.
    Veras PS; Topilko A; Gouhier N; Moreau MF; Rabinovitch M; Pouchelet M
    Braz J Med Biol Res; 1996 Aug; 29(8):1009-18. PubMed ID: 9181083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis.
    Heinzen RA; Scidmore MA; Rockey DD; Hackstadt T
    Infect Immun; 1996 Mar; 64(3):796-809. PubMed ID: 8641784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis.
    Pessoa CC; Ferreira ÉR; Bayer-Santos E; Rabinovitch M; Mortara RA; Real F
    Infect Immun; 2016 May; 84(5):1603-1614. PubMed ID: 26975994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocytic SNAREs are involved in optimal Coxiella burnetii vacuole development.
    Campoy EM; Mansilla ME; Colombo MI
    Cell Microbiol; 2013 Jun; 15(6):922-41. PubMed ID: 23217169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tamoxifen is effective against Leishmania and induces a rapid alkalinization of parasitophorous vacuoles harbouring Leishmania (Leishmania) amazonensis amastigotes.
    Miguel DC; Yokoyama-Yasunaka JK; Andreoli WK; Mortara RA; Uliana SR
    J Antimicrob Chemother; 2007 Sep; 60(3):526-34. PubMed ID: 17584801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments.
    Pechstein J; Schulze-Luehrmann J; Lührmann A
    Int J Med Microbiol; 2018 Jan; 308(1):77-83. PubMed ID: 28935173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation of Living Leishmania Promastigotes in Artificial Lipid Vacuoles.
    Guedes CE; Lima JG; Helfer E; Veras PS; Viallat A
    PLoS One; 2015; 10(8):e0134925. PubMed ID: 26241746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusogenicity of the Coxiella burnetii parasitophorous vacuole.
    Howe D; Melnicákova J; Barák I; Heinzen RA
    Ann N Y Acad Sci; 2003 Jun; 990():556-62. PubMed ID: 12860689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key role of the macrophage microtubule network in the intracellular lifestyle of Leishmania amazonensis.
    Cojean S; Nicolas V; Lievin-Le Moal V
    Cell Microbiol; 2020 Sep; 22(9):e13218. PubMed ID: 32406568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ultrastructure of the parasitophorous vacuole formed by Leishmania major.
    Castro R; Scott K; Jordan T; Evans B; Craig J; Peters EL; Swier K
    J Parasitol; 2006 Dec; 92(6):1162-70. PubMed ID: 17304790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CsrA-Binding,
    Wachter S; Bonazzi M; Shifflett K; Moses AS; Raghavan R; Minnick MF
    J Bacteriol; 2019 Nov; 201(22):. PubMed ID: 31451541
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.