These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7642573)

  • 61. Characterization of Holliday structures in FLP protein-promoted site-specific recombination.
    Meyer-Leon L; Inman RB; Cox MM
    Mol Cell Biol; 1990 Jan; 10(1):235-42. PubMed ID: 2403636
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites.
    Bolusani S; Ma CH; Paek A; Konieczka JH; Jayaram M; Voziyanov Y
    Nucleic Acids Res; 2006; 34(18):5259-69. PubMed ID: 17003057
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Topological analysis of the role of homology in Flp-mediated recombination.
    Azam N; Dixon JE; Sadowski PD
    J Biol Chem; 1997 Mar; 272(13):8731-8. PubMed ID: 9079707
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Determination of DNA sequences essential for FLP-mediated recombination by a novel method.
    Gronostajski RM; Sadowski PD
    J Biol Chem; 1985 Oct; 260(22):12320-7. PubMed ID: 2995371
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tyr60 variants of Flp recombinase generate conformationally altered protein-DNA complexes. Differential activity in full-site and half-site recombinations.
    Chen JW; Evans BR; Zheng L; Jayaram M
    J Mol Biol; 1991 Mar; 218(1):107-18. PubMed ID: 2002496
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Recombination of hybrid target sites by binary combinations of Flp variants: mutations that foster interprotomer collaboration and enlarge substrate tolerance.
    Konieczka JH; Paek A; Jayaram M; Voziyanov Y
    J Mol Biol; 2004 May; 339(2):365-78. PubMed ID: 15136039
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The functional significance of DNA sequence structure in a site-specific genetic recombination reaction.
    Umlauf SW; Cox MM
    EMBO J; 1988 Jun; 7(6):1845-52. PubMed ID: 3169007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation.
    Friesen H; Sadowski PD
    J Mol Biol; 1992 May; 225(2):313-26. PubMed ID: 1593623
    [TBL] [Abstract][Full Text] [Related]  

  • 69. DNA recombination: holliday junctions dynamics and branch migration.
    Lushnikov AY; Bogdanov A; Lyubchenko YL
    J Biol Chem; 2003 Oct; 278(44):43130-4. PubMed ID: 12949070
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Holliday junction binding and resolution by the Rap structure-specific endonuclease of phage lambda.
    Sharples GJ; Curtis FA; McGlynn P; Bolt EL
    J Mol Biol; 2004 Jul; 340(4):739-51. PubMed ID: 15223317
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sequence of the loxP site determines the order of strand exchange by the Cre recombinase.
    Lee L; Sadowski PD
    J Mol Biol; 2003 Feb; 326(2):397-412. PubMed ID: 12559909
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration.
    Iwasaki H; Takahagi M; Nakata A; Shinagawa H
    Genes Dev; 1992 Nov; 6(11):2214-20. PubMed ID: 1427081
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Functional analysis of Box II mutations in yeast site-specific recombinases Flp and R. Significance of amino acid conservation within the Int family and the yeast sub-family.
    Lee J; Serre MC; Yang SH; Whang I; Araki H; Oshima Y; Jayaram M
    J Mol Biol; 1992 Dec; 228(4):1091-103. PubMed ID: 1474580
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Resolution of Holliday junction analogs by T4 endonuclease VII can be directed by substrate structure.
    Mueller JE; Newton CJ; Jensch F; Kemper B; Cunningham RP; Kallenbach NR; Seeman NC
    J Biol Chem; 1990 Aug; 265(23):13918-24. PubMed ID: 2199447
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural plasticity of the Flp-Holliday junction complex.
    Conway AB; Chen Y; Rice PA
    J Mol Biol; 2003 Feb; 326(2):425-34. PubMed ID: 12559911
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Resolution of undistorted symmetric immobile DNA junctions by vaccinia topoisomerase I.
    Liao S; Mao C; Birktoft JJ; Shuman S; Seeman NC
    Biochemistry; 2004 Feb; 43(6):1520-31. PubMed ID: 14769028
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of substrate specificity of the RuvC holliday junction resolvase with synthetic Holliday junctions.
    Shida T; Iwasaki H; Saito A; Kyogoku Y; Shinagawa H
    J Biol Chem; 1996 Oct; 271(42):26105-9. PubMed ID: 8824253
    [TBL] [Abstract][Full Text] [Related]  

  • 78. FLP recombinase of the 2 microns circle plasmid of Saccharomyces cerevisiae bends its DNA target. Isolation of FLP mutants defective in DNA bending.
    Schwartz CJ; Sadowski PD
    J Mol Biol; 1989 Feb; 205(4):647-58. PubMed ID: 2648010
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Flp ribonuclease activities. Mechanistic similarities and contrasts to site-specific DNA recombination.
    Xu CJ; Ahn YT; Pathania S; Jayaram M
    J Biol Chem; 1998 Nov; 273(46):30591-8. PubMed ID: 9804830
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Resolution of Holliday junctions by eukaryotic DNA topoisomerase I.
    Sekiguchi J; Seeman NC; Shuman S
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):785-9. PubMed ID: 8570635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.