These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7642573)

  • 81. Electrostatic suppression allows tyrosine site-specific recombination in the absence of a conserved catalytic arginine.
    Rowley PA; Kachroo AH; Ma CH; Maciaszek AD; Guga P; Jayaram M
    J Biol Chem; 2010 Jul; 285(30):22976-85. PubMed ID: 20448041
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Behavior of a cross-linked attachment site: testing the role of branch migration in site-specific recombination.
    Cowart M; Benkovic SJ; Nash HA
    J Mol Biol; 1991 Aug; 220(3):621-9. PubMed ID: 1831237
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Substrate recognition by the 2 micron circle site-specific recombinase: effect of mutations within the symmetry elements of the minimal substrate.
    Prasad PV; Horensky D; Young LJ; Jayaram M
    Mol Cell Biol; 1986 Dec; 6(12):4329-34. PubMed ID: 3796604
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.
    Ma CH; Liu YT; Savva CG; Rowley PA; Cannon B; Fan HF; Russell R; Holzenburg A; Jayaram M
    J Mol Biol; 2014 Feb; 426(4):793-815. PubMed ID: 24286749
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Protein-based asymmetry and protein-protein interactions in FLP recombinase-mediated site-specific recombination.
    Qian XH; Inman RB; Cox MM
    J Biol Chem; 1990 Dec; 265(35):21779-88. PubMed ID: 2254330
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination.
    Fan HF; Cheng YS; Ma CH; Jayaram M
    Nucleic Acids Res; 2015 Mar; 43(6):3237-55. PubMed ID: 25765648
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The order of strand exchanges in Cre-LoxP recombination and its basis suggested by the crystal structure of a Cre-LoxP Holliday junction complex.
    Martin SS; Pulido E; Chu VC; Lechner TS; Baldwin EP
    J Mol Biol; 2002 May; 319(1):107-27. PubMed ID: 12051940
    [TBL] [Abstract][Full Text] [Related]  

  • 88. RAD52-dependent and -independent homologous recombination initiated by Flp recombinase at a single FRT site flanked by direct repeats.
    Prado F; González-Barrera S; Aguilera A
    Mol Gen Genet; 2000 Feb; 263(1):73-80. PubMed ID: 10732675
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Reversed DNA strand cleavage specificity in initiation of Cre-LoxP recombination induced by the His289Ala active-site substitution.
    Gelato KA; Martin SS; Baldwin EP
    J Mol Biol; 2005 Nov; 354(2):233-45. PubMed ID: 16242714
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Geometry of site alignment during int family recombination: antiparallel synapsis by the Flp recombinase.
    Grainge I; Buck D; Jayaram M
    J Mol Biol; 2000 May; 298(5):749-64. PubMed ID: 10801346
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Single molecule fluorescence analysis of branch migration of holliday junctions: effect of DNA sequence.
    Karymov MA; Bogdanov A; Lyubchenko YL
    Biophys J; 2008 Aug; 95(3):1239-47. PubMed ID: 18424495
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase.
    Nolivos S; Pages C; Rousseau P; Le Bourgeois P; Cornet F
    Nucleic Acids Res; 2010 Oct; 38(19):6477-89. PubMed ID: 20542912
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination.
    Gopaul DN; Guo F; Van Duyne GD
    EMBO J; 1998 Jul; 17(14):4175-87. PubMed ID: 9670032
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Crossover isomer bias is the primary sequence-dependent property of immobilized Holliday junctions.
    Miick SM; Fee RS; Millar DP; Chazin WJ
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9080-4. PubMed ID: 9256438
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The isomeric preference of Holliday junctions influences resolution bias by lambda integrase.
    Azaro MA; Landy A
    EMBO J; 1997 Jun; 16(12):3744-55. PubMed ID: 9218815
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Resolution of Holliday junctions by eukaryotic DNA topoisomerase I.
    Sekiguchi J; Seeman NC; Shuman S
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):785-9. PubMed ID: 8570635
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Junction mobility and resolution of Holliday structures by Flp site-specific recombinase. Testing partner compatibility during recombination.
    Lee J; Lee J; Jayaram M
    J Biol Chem; 1995 Aug; 270(32):19086-92. PubMed ID: 7642573
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Role of partner homology in DNA recombination. Complementary base pairing orients the 5'-hydroxyl for strand joining during Flp site-specific recombination.
    Lee J; Jayaram M
    J Biol Chem; 1995 Feb; 270(8):4042-52. PubMed ID: 7876153
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Half-site recombinations mediated by yeast site-specific recombinases Flp and R.
    Serre MC; Evans BR; Araki H; Oshima Y; Jayaram M
    J Mol Biol; 1992 Jun; 225(3):621-42. PubMed ID: 1602474
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.