These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7642590)

  • 41. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The reductive half-reaction of xanthine oxidase. Identification of spectral intermediates in the hydroxylation of 2-hydroxy-6-methylpurine.
    McWhirter RB; Hille R
    J Biol Chem; 1991 Dec; 266(35):23724-31. PubMed ID: 1660883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.
    Barber MJ; Bray RC; Lowe DJ; Coughlan MP
    Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nature of the catalytically labile oxygen at the active site of xanthine oxidase.
    Doonan CJ; Stockert A; Hille R; George GN
    J Am Chem Soc; 2005 Mar; 127(12):4518-22. PubMed ID: 15783235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electronic structure contributions to reactivity in xanthine oxidase family enzymes.
    Stein BW; Kirk ML
    J Biol Inorg Chem; 2015 Mar; 20(2):183-94. PubMed ID: 25425163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase.
    Nishino T; Okamoto K
    J Inorg Biochem; 2000 Nov; 82(1-4):43-9. PubMed ID: 11132637
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Reaction of fluorescein bimercuric acetate with a molybdenum center of xanthine oxidase from milk].
    Kozachenko AI; Nagler LG; Lependina OL; Ianovskaia IM; Vartanian LS
    Biokhimiia; 1987 Dec; 52(12):1948-57. PubMed ID: 2833934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conversion of xanthine dehydrogenase into oxidase and its role in reperfusion injury.
    Nishino T; Nakanishi S; Okamoto K; Mizushima J; Hori H; Iwasaki T; Nishino T; Ichimori K; Nakazawa H
    Biochem Soc Trans; 1997 Aug; 25(3):783-6. PubMed ID: 9388545
    [No Abstract]   [Full Text] [Related]  

  • 49. Theoretical characterization of the "very rapid" Mo(V) species generated in the oxidation of xanthine oxidase.
    Bayse CA
    Inorg Chem; 2006 Mar; 45(5):2199-202. PubMed ID: 16499383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electronic structure studies of oxomolybdenum tetrathiolate complexes: origin of reduction potential differences and relationship to cysteine-molybdenum bonding in sulfite oxidase.
    McNaughton RL; Tipton AA; Rubie ND; Conry RR; Kirk ML
    Inorg Chem; 2000 Dec; 39(25):5697-706. PubMed ID: 11151370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase.
    Hille R; Nishino T
    FASEB J; 1995 Aug; 9(11):995-1003. PubMed ID: 7649415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of inactivation of molybdoenzymes by cyanide.
    Coughlan MP; Johnson JL; Rajagopalan KV
    J Biol Chem; 1980 Apr; 255(7):2694-9. PubMed ID: 6244290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlating C-H bond cleavage with molybdenum reduction in xanthine oxidase.
    Kirk ML; Berhane A
    Chem Biodivers; 2012 Sep; 9(9):1756-60. PubMed ID: 22976967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase.
    Godber BL; Doel JJ; Sapkota GP; Blake DR; Stevens CR; Eisenthal R; Harrison R
    J Biol Chem; 2000 Mar; 275(11):7757-63. PubMed ID: 10713088
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectroscopic studies on the iron-sulfur centers of milk xanthine oxidase.
    Hille R; Hagen WR; Dunham WR
    J Biol Chem; 1985 Sep; 260(19):10569-75. PubMed ID: 2993281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular characterization of human xanthine oxidoreductase: the enzyme is grossly deficient in molybdenum and substantially deficient in iron-sulphur centres.
    Godber BL; Schwarz G; Mendel RR; Lowe DJ; Bray RC; Eisenthal R; Harrison R
    Biochem J; 2005 Jun; 388(Pt 2):501-8. PubMed ID: 15679468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectroscopic studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans.
    Bastian NR; Kay CJ; Barber MJ; Rajagopalan KV
    J Biol Chem; 1991 Jan; 266(1):45-51. PubMed ID: 1845974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases.
    Wahl RC; Rajagopalan KV
    J Biol Chem; 1982 Feb; 257(3):1354-9. PubMed ID: 6276383
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reductive half-reaction of xanthine oxidase: mechanistic role of the species giving rise to the "rapid type 1" molybdenum(V) electron paramagnetic resonance signal.
    Hille R; Kim JH; Hemann C
    Biochemistry; 1993 Apr; 32(15):3973-80. PubMed ID: 8385992
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system.
    Cervilla A; PĂ©rez-Pla F; Llopis E; Piles M
    Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.