These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 7642627)
1. Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. Kamiya H; Kasai H J Biol Chem; 1995 Aug; 270(33):19446-50. PubMed ID: 7642627 [TBL] [Abstract][Full Text] [Related]
2. 2-Hydroxyadenine (isoguanine) as oxidative DNA damage: its formation and mutation inducibility. Kamiya H; Kasai H Nucleic Acids Symp Ser; 1995; (34):233-4. PubMed ID: 8841637 [TBL] [Abstract][Full Text] [Related]
3. Two DNA polymerases of Escherichia coli display distinct misinsertion specificities for 2-hydroxy-dATP during DNA synthesis. Kamiya H; Maki H; Kasai H Biochemistry; 2000 Aug; 39(31):9508-13. PubMed ID: 10924147 [TBL] [Abstract][Full Text] [Related]
4. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-. Lowe LG; Guengerich FP Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958 [TBL] [Abstract][Full Text] [Related]
5. 2-Hydroxy-dATP is incorporated opposite G by Escherichia coli DNA polymerase III resulting in high mutagenicity. Kamiya H; Kasai H Nucleic Acids Res; 2000 Apr; 28(7):1640-6. PubMed ID: 10710431 [TBL] [Abstract][Full Text] [Related]
6. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Kamiya H; Ueda T; Ohgi T; Matsukage A; Kasai H Nucleic Acids Res; 1995 Mar; 23(5):761-6. PubMed ID: 7708490 [TBL] [Abstract][Full Text] [Related]
7. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics. Furge LL; Guengerich FP Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365 [TBL] [Abstract][Full Text] [Related]
8. Induction of chromosomal gene mutations in Escherichia coli by direct incorporation of oxidatively damaged nucleotides. New evaluation method for mutagenesis by damaged DNA precursors in vivo. Inoue M; Kamiya H; Fujikawa K; Ootsuyama Y; Murata-Kamiya N; Osaki T; Yasumoto K; Kasai H J Biol Chem; 1998 May; 273(18):11069-74. PubMed ID: 9556591 [TBL] [Abstract][Full Text] [Related]
9. Utilization of 1,N6-etheno-2'-deoxyadenosine 5'-triphosphate during DNA synthesis on natural templates, catalyzed by DNA polymerase I of Escherichia coli. Revich GG; Beattie KL Carcinogenesis; 1986 Sep; 7(9):1569-76. PubMed ID: 3527467 [TBL] [Abstract][Full Text] [Related]
10. Effects of 2-chloro-2'-deoxyadenosine 5'-triphosphate on DNA synthesis in vitro by purified bacterial and viral DNA polymerases. Hentosh P; McCastlain JC; Blakley RL Biochemistry; 1991 Jan; 30(2):547-54. PubMed ID: 1703019 [TBL] [Abstract][Full Text] [Related]
11. Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus. Venkatramani R; Radhakrishnan R Proteins; 2008 May; 71(3):1360-72. PubMed ID: 18058909 [TBL] [Abstract][Full Text] [Related]
12. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment). Eger BT; Benkovic SJ Biochemistry; 1992 Sep; 31(38):9227-36. PubMed ID: 1327109 [TBL] [Abstract][Full Text] [Related]
13. Effect of sequence contexts on misincorporation of nucleotides opposite 2-hydroxyadenine. Kamiya H; Kasai H FEBS Lett; 1996 Aug; 391(1-2):113-6. PubMed ID: 8706896 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of incorporation of O6-methyldeoxyguanosine monophosphate during in vitro DNA synthesis. Snow ET; Foote RS; Mitra S Biochemistry; 1984 Sep; 23(19):4289-94. PubMed ID: 6386047 [TBL] [Abstract][Full Text] [Related]
15. Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase delta. Steady-state and pre-steady-state kinetic analysis. Einolf HJ; Guengerich FP J Biol Chem; 2001 Feb; 276(6):3764-71. PubMed ID: 11110788 [TBL] [Abstract][Full Text] [Related]
16. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template. Sampoli BenÃtez B; Barbati ZR; Arora K; Bogdanovic J; Schlick T Biophys J; 2013 Dec; 105(11):2559-68. PubMed ID: 24314086 [TBL] [Abstract][Full Text] [Related]
17. Klenow fragment-DNA interaction required for the incorporation of nucleotides opposite guanine and O6-methylguanine. Spratt TE Biochemistry; 1997 Oct; 36(43):13292-7. PubMed ID: 9341220 [TBL] [Abstract][Full Text] [Related]
18. Nonrandom substitution of 2-aminopurine for adenine during deoxyribonucleic acid synthesis in vitro. Pless RC; Levitt LM; Bessman MJ Biochemistry; 1981 Oct; 20(21):6235-44. PubMed ID: 7030386 [TBL] [Abstract][Full Text] [Related]
19. Incorporation of 2-halogeno-2'-deoxyadenosine 5-triphosphates into DNA during replication by human polymerases alpha and beta. Hentosh P; Koob R; Blakley RL J Biol Chem; 1990 Mar; 265(7):4033-40. PubMed ID: 2303492 [TBL] [Abstract][Full Text] [Related]
20. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. Rabkin SD; Strauss BS J Mol Biol; 1984 Sep; 178(3):569-94. PubMed ID: 6492159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]