These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7642816)

  • 1. The minimum lung pressure to sustain vocal fold oscillation.
    Lucero JC
    J Acoust Soc Am; 1995 Aug; 98(2 Pt 1):779-84. PubMed ID: 7642816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physics of small-amplitude oscillation of the vocal folds.
    Titze IR
    J Acoust Soc Am; 1988 Apr; 83(4):1536-52. PubMed ID: 3372869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset.
    Lucero JC
    J Acoust Soc Am; 1999 Jan; 105(1):423-31. PubMed ID: 9921668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the ventricular folds on a voice source with specified vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2010 Mar; 127(3):1519-27. PubMed ID: 20329852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring vocal fold abduction through vocal fold contact area.
    Rothenberg M; Mahshie JJ
    J Speech Hear Res; 1988 Sep; 31(3):338-51. PubMed ID: 3172751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interrelationship of subglottic air pressure, fundamental frequency, and vocal intensity during speech.
    Plant RL; Younger RM
    J Voice; 2000 Jun; 14(2):170-7. PubMed ID: 10875568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroglottography and laryngeal articulation in speech.
    Hong KH; Kim HK
    Folia Phoniatr Logop; 1997; 49(5):225-33. PubMed ID: 9311157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-mass model of the vocal folds: negative differential resistance oscillation.
    Conrad WA; McQueen DM
    J Acoust Soc Am; 1988 Jun; 83(6):2453-8. PubMed ID: 3411036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonation threshold pressure in a physical model of the vocal fold mucosa.
    Titze IR; Schmidt SS; Titze MR
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady flow through in-vitro models of the glottis.
    Hofmans GC; Groot G; Ranucci M; Graziani G; Hirschberg A
    J Acoust Soc Am; 2003 Mar; 113(3):1658-75. PubMed ID: 12656399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rules for controlling low-dimensional vocal fold models with muscle activation.
    Titze IR; Story BH
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1064-76. PubMed ID: 12243155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech.
    Erath BD; Zañartu M; Peterson SD; Plesniak MW
    Chaos; 2011 Sep; 21(3):033113. PubMed ID: 21974648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.