BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7643170)

  • 21. Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus.
    Jiang D; Palmer AR; Winter IM
    J Neurophysiol; 1996 Jan; 75(1):380-95. PubMed ID: 8822565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multisensory Integration Enhances Temporal Coding in Ventral Cochlear Nucleus Bushy Cells.
    Heeringa AN; Wu C; Shore SE
    J Neurosci; 2018 Mar; 38(11):2832-2843. PubMed ID: 29440557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings.
    Kopp-Scheinpflug C; Dehmel S; Dörrscheidt GJ; Rübsamen R
    J Neurosci; 2002 Dec; 22(24):11004-18. PubMed ID: 12486196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model.
    Rothman JS; Young ED; Manis PB
    J Neurophysiol; 1993 Dec; 70(6):2562-83. PubMed ID: 8120599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus.
    Rhode WS; Oertel D; Smith PH
    J Comp Neurol; 1983 Feb; 213(4):448-63. PubMed ID: 6300200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gamma-aminobutyric acidergic and glycinergic inputs shape coding of amplitude modulation in the chinchilla cochlear nucleus.
    Backoff PM; Shadduck Palombi P; Caspary DM
    Hear Res; 1999 Aug; 134(1-2):77-88. PubMed ID: 10452378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vowel representations in the ventral cochlear nucleus of the cat: effects of level, background noise, and behavioral state.
    May BJ; Prell GS; Sachs MB
    J Neurophysiol; 1998 Apr; 79(4):1755-67. PubMed ID: 9535945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal measures and neural strategies for detection of tones in noise based on responses in anteroventral cochlear nucleus.
    Gai Y; Carney LH
    J Neurophysiol; 2006 Nov; 96(5):2451-64. PubMed ID: 16914617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling inhibition of type II units in the dorsal cochlear nucleus.
    Hancock KE; Davis KA; Voigt HF
    Biol Cybern; 1997 Jun; 76(6):419-28. PubMed ID: 9263430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli.
    Laudanski J; Coombes S; Palmer AR; Sumner CJ
    J Neurophysiol; 2010 Mar; 103(3):1226-37. PubMed ID: 20042702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptic inputs to stellate cells in the ventral cochlear nucleus.
    Ferragamo MJ; Golding NL; Oertel D
    J Neurophysiol; 1998 Jan; 79(1):51-63. PubMed ID: 9425176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Envelope coding in the lateral superior olive. III. Comparison with afferent pathways.
    Joris PX; Yin TC
    J Neurophysiol; 1998 Jan; 79(1):253-69. PubMed ID: 9425196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excitatory/inhibitory response types in the cochlear nucleus: relationships to discharge patterns and responses to electrical stimulation of the auditory nerve.
    Shofner WP; Young ED
    J Neurophysiol; 1985 Oct; 54(4):917-39. PubMed ID: 4067627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular responses of the rat cochlear nucleus to sound and its role in temporal coding.
    Paolini AG; Clark GM; Burkitt AN
    Neuroreport; 1997 Oct; 8(15):3415-21. PubMed ID: 9351683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural encoding of single-formant stimuli in the ventral cochlear nucleus of the chinchilla.
    Rhode WS
    Hear Res; 1998 Mar; 117(1-2):39-56. PubMed ID: 9557977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase Locking of Auditory Nerve Fibers: The Role of Lowpass Filtering by Hair Cells.
    Peterson AJ; Heil P
    J Neurosci; 2020 Jun; 40(24):4700-4714. PubMed ID: 32376778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase-locked response characteristics of single neurons in the frog "cochlear nucleus" to steady-state and sinusoidal-amplitude-modulated tones.
    Feng AS; Lin WY
    J Neurophysiol; 1994 Nov; 72(5):2209-21. PubMed ID: 7884454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli.
    Nelken I; Young ED
    J Neurophysiol; 1994 Jun; 71(6):2446-62. PubMed ID: 7931527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.