These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7643170)

  • 41. Influence of inhibitory inputs on rate and timing of responses in the anteroventral cochlear nucleus.
    Gai Y; Carney LH
    J Neurophysiol; 2008 Mar; 99(3):1077-95. PubMed ID: 18199821
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement and distortion in the temporal representation of sounds in the ventral cochlear nucleus of chinchillas and cats.
    Recio-Spinoso A
    PLoS One; 2012; 7(9):e44286. PubMed ID: 23028514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of cochlear nucleus units in the chinchilla to iterated rippled noises: analysis of neural autocorrelograms.
    Shofner WP
    J Neurophysiol; 1999 Jun; 81(6):2662-74. PubMed ID: 10368386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats.
    May BJ; Sachs MB
    J Neurophysiol; 1992 Nov; 68(5):1589-602. PubMed ID: 1479432
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells.
    Koert E; Kuenzel T
    J Neurophysiol; 2021 Mar; 125(3):915-937. PubMed ID: 33471627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synaptic mechanisms for generating temporal diversity of auditory representation in the dorsal cochlear nucleus.
    Zhou M; Li YT; Yuan W; Tao HW; Zhang LI
    J Neurophysiol; 2015 Mar; 113(5):1358-68. PubMed ID: 25475349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Some Features of Sound Signal Envelope by the Frog's Cochlear Nucleus Neurons].
    Bibikov NG
    Biofizika; 2015; 60(3):506-18. PubMed ID: 26349214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Somatosensory effects on neurons in dorsal cochlear nucleus.
    Young ED; Nelken I; Conley RA
    J Neurophysiol; 1995 Feb; 73(2):743-65. PubMed ID: 7760132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Responses of medial olivocochlear neurons. Specifying the central pathways of the medial olivocochlear reflex.
    Brown MC; de Venecia RK; Guinan JJ
    Exp Brain Res; 2003 Dec; 153(4):491-8. PubMed ID: 14557911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of responses to noise in the ventral cochlear nucleus using Wiener kernels.
    Recio-Spinoso A; van Dijk P
    Hear Res; 2006; 216-217():7-18. PubMed ID: 16644154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise.
    Winter IM; Palmer AR
    J Neurophysiol; 1995 Jan; 73(1):141-59. PubMed ID: 7714560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cochlear aging disrupts the correlation between spontaneous rate- and sound-level coding in auditory nerve fibers.
    Heeringa AN; Teske F; Ashida G; Köppl C
    J Neurophysiol; 2023 Sep; 130(3):736-750. PubMed ID: 37584075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes of response patterns to excitatory stimuli of different intensities: a model-based study of cochlear nucleus neurons.
    Liu J; Wang C; Xiao Z; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Mar; 34(3):291-4. PubMed ID: 24670436
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells.
    Zhang S; Oertel D
    J Neurophysiol; 1994 Mar; 71(3):914-30. PubMed ID: 8201432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatiotemporal tuning of low-frequency cells in the anteroventral cochlear nucleus.
    Carney LH; Friedman M
    J Neurosci; 1998 Feb; 18(3):1096-104. PubMed ID: 9437029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A physiological and structural study of neuron types in the cochlear nucleus. I. Intracellular responses to acoustic stimulation and current injection.
    Feng JJ; Kuwada S; Ostapoff EM; Batra R; Morest DK
    J Comp Neurol; 1994 Aug; 346(1):1-18. PubMed ID: 7962705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temporal representation of iterated rippled noise as a function of delay and sound level in the ventral cochlear nucleus.
    Wiegrebe L; Winter IM
    J Neurophysiol; 2001 Mar; 85(3):1206-19. PubMed ID: 11247990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil.
    Kuenzel T; Nerlich J; Wagner H; Rübsamen R; Milenkovic I
    Front Neural Circuits; 2015; 9():14. PubMed ID: 25873864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms of onset responses in octopus cells of the cochlear nucleus: implications of a model.
    Cai Y; Walsh EJ; McGee J
    J Neurophysiol; 1997 Aug; 78(2):872-83. PubMed ID: 9307120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Classification of unit types in the anteroventral cochlear nucleus of laboratory mice.
    Roos MJ; May BJ
    Hear Res; 2012 Jul; 289(1-2):13-26. PubMed ID: 22579638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.