These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7643171)

  • 1. Spinal plasticity after hemilabyrinthectomy and its relation to postural recovery in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1995 Apr; 73(4):1617-31. PubMed ID: 7643171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal compensation for postural deficits after hemilabyrinthectomy?
    Straka H; Kunkel A; Dieringer N
    Neuroreport; 1993 Sep; 4(9):1071-4. PubMed ID: 8219030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradual and reversible central vestibular reorganization in frog after selective labyrinthine nerve branch lesions.
    Goto F; Straka H; Dieringer N
    Exp Brain Res; 2002 Dec; 147(3):374-86. PubMed ID: 12428145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological and electrophysiological consequences of unilateral pre- versus postganglionic vestibular lesions in the frog.
    Kunkel AW; Dieringer N
    J Comp Physiol A; 1994 May; 174(5):621-32. PubMed ID: 8006858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity in vestibular and spinal circuits after hemilabyrinthectomy in the frog.
    Straka H; Kunkel AW; Dieringer N
    Eur J Morphol; 1994 Aug; 32(2-4):303-6. PubMed ID: 7803184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations.
    Vibert N; Babalian A; Serafin M; Gasc JP; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 93(2):413-32. PubMed ID: 10465424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Vestibular compensation': neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates.
    Dieringer N
    Prog Neurobiol; 1995 Jun; 46(2-3):97-129. PubMed ID: 7568917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expansion of afferent vestibular signals after the section of one of the vestibular nerve branches.
    Goto F; Straka H; Dieringer N
    J Neurophysiol; 2000 Jul; 84(1):581-4. PubMed ID: 10899230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steps toward recovery of function after hemilabyrinthectomy in frogs.
    Dieringer N; Straka H
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):27-33. PubMed ID: 9674511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro.
    Thompson SW; Woolf CJ; Sivilotti LG
    J Neurophysiol; 1993 Jun; 69(6):2116-28. PubMed ID: 8350135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of static tilt on cervical spinoreticular tract neurons.
    Coulter JD; Mergner T; Pompeiano O
    J Neurophysiol; 1976 Jan; 39(1):45-62. PubMed ID: 1249603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postlesional vestibular reorganization in frogs: evidence for a basic reaction pattern after nerve injury.
    Goto F; Straka H; Dieringer N
    J Neurophysiol; 2001 Jun; 85(6):2643-6. PubMed ID: 11387410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog.
    Cochran SL; Kasik P; Precht W
    Synapse; 1987; 1(1):102-23. PubMed ID: 2850617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory Pathways.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):329-357. PubMed ID: 314903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of the eighth cranial nerve. III. Central projections of the primary afferent fibers from individual vestibular receptors in the bullfrog.
    Newman A; Suarez C; Kuruvilla A; Honrubia V
    Laryngoscope; 1989 Feb; 99(2):162-73. PubMed ID: 2783616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development.
    Arai Y; Momose-Sato Y; Sato K; Kamino K
    J Neurophysiol; 1999 Apr; 81(4):1889-902. PubMed ID: 10200224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual pathways for postural control and negative phototaxis in lamprey.
    Ullén F; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1997 Aug; 78(2):960-76. PubMed ID: 9307127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons.
    Straka H; Holler S; Goto F
    J Neurophysiol; 2002 Nov; 88(5):2287-301. PubMed ID: 12424270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial restitution of lesion-induced deficits in the horizontal vestibulo-ocular reflex performance measured from the bilateral abducens motor output in frogs.
    Agosti R; Dieringer N; Precht W
    Exp Brain Res; 1986; 61(2):291-302. PubMed ID: 3485055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.