These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7643411)

  • 21. Isolation and characterization of genome-specific DNA sequences in Triticeae species.
    Anamthawat-Jónsson K; Heslop-Harrison JS
    Mol Gen Genet; 1993 Aug; 240(2):151-8. PubMed ID: 8355649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and evolution of a highly repetitive DNA sequence from Brassica napus.
    Xia X; Selvaraj G; Bertrand H
    Plant Mol Biol; 1993 Jan; 21(2):213-24. PubMed ID: 8425054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterochromatic DNA in Triturus (Amphibia, Urodela) II. A centromeric satellite DNA.
    Cremisi F; Vignali R; Batistoni R; Barsacchi G
    Chromosoma; 1988 Nov; 97(3):204-11. PubMed ID: 3219917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel tRNA species as an origin of short interspersed repetitive elements (SINEs). Equine SINEs may have originated from tRNA(Ser).
    Sakagami M; Ohshima K; Mukoyama H; Yasue H; Okada N
    J Mol Biol; 1994 Jun; 239(5):731-5. PubMed ID: 8014993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements.
    Ohshima K; Hamada M; Terai Y; Okada N
    Mol Cell Biol; 1996 Jul; 16(7):3756-64. PubMed ID: 8668192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A family of dispersed repeats in the genome of Vicia faba: structure, chromosomal organization, redundancy modulation, and evolution.
    Frediani M; Gelati MT; Maggini F; Galasso I; Minelli S; Ceccarelli M; Cionini PG
    Chromosoma; 1999 Sep; 108(5):317-24. PubMed ID: 10525968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An analysis of retroposition in plants based on a family of SINEs from Brassica napus.
    Deragon JM; Landry BS; Pélissier T; Tutois S; Tourmente S; Picard G
    J Mol Evol; 1994 Oct; 39(4):378-86. PubMed ID: 7966368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and identification of a novel tandemly repeated DNA sequence in the centromeric region of human chromosome 8.
    Lin CC; Sasi R; Lee C; Fan YS; Court D
    Chromosoma; 1993 May; 102(5):333-9. PubMed ID: 7916664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity.
    Morgante M; Jurman I; Shi L; Zhu T; Keim P; Rafalski JA
    Chromosome Res; 1997 Sep; 5(6):363-73. PubMed ID: 9364938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A highly repetitive DNA sequence possibly unique to canids.
    Minnick MF; Stillwell LC; Heineman JM; Stiegler GL
    Gene; 1992 Jan; 110(2):235-8. PubMed ID: 1537560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A temperature-regulated, retrotransposon-like element from Candida albicans.
    Chen JY; Fonzi WA
    J Bacteriol; 1992 Sep; 174(17):5624-32. PubMed ID: 1324905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes.
    Mueller RL; Macey JR; Jaekel M; Wake DB; Boore JL
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13820-5. PubMed ID: 15365171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species.
    Lee C; Ritchie DB; Lin CC
    Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel species-specific tandem repeat DNA family from Sinapis arvensis: detection of telomere-like sequences.
    Kapila R; Das S; Srivastava PS; Lakshmikumaran M
    Genome; 1996 Aug; 39(4):758-66. PubMed ID: 8776867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and sequence analysis of Caenorhabditis briggsae repetitive elements related to the Caenorhabditis elegans transposon Tc1.
    Harris LJ; Prasad S; Rose AM
    J Mol Evol; 1990 Apr; 30(4):359-69. PubMed ID: 2161057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. T-DNA integrations in a new family of repetitive elements of Nicotiana tabacum.
    Suter-Crazzolara C; Brzobohaty B; Gazdova B; Schell J; Reiss B
    J Mol Evol; 1995 Oct; 41(4):498-504. PubMed ID: 7563138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders.
    Mueller RL; Boore JL
    Mol Biol Evol; 2005 Oct; 22(10):2104-12. PubMed ID: 15987876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repetitive DNA sequence families in Hemitaxonus minomensis and H. athyrii (Hymenoptera; Tenthredinidae).
    Sonoda S; Yamada T; Naito T; Nakasuji F
    Jpn J Genet; 1995 Feb; 70(1):7-16. PubMed ID: 7772383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of a repetitive DNA element from the genome of the human filarial parasite, Brugia malayi.
    Natarajan S; Werner C; Cameron M; Rajan TV
    Mol Biochem Parasitol; 1990 Nov; 43(1):39-49. PubMed ID: 2290445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.