BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7643797)

  • 1. The influence of heavy water on boron requirements for neutron capture therapy.
    Wallace SA; Mathur JN; Allen BJ
    Med Phys; 1995 May; 22(5):585-90. PubMed ID: 7643797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo calculations of epithermal boron neutron capture therapy with heavy water.
    Wallace SA; Allen BJ; Mathur JN
    Phys Med Biol; 1995 Oct; 40(10):1599-608. PubMed ID: 8532742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Teatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumours.
    Wallace SA; Mathur JN; Allen BJ
    Phys Med Biol; 1994 May; 39(5):897-906. PubMed ID: 15552092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam.
    Konijnenberg MW; Dewit LG; Mijnheer BJ; Raaijmakers CP; Watkins PR
    Radiat Res; 1995 Jun; 142(3):327-39. PubMed ID: 7761583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a californium-based epithermal neutron beam for neutron capture therapy.
    Yanch JC; Kim JK; Wilson MJ
    Phys Med Biol; 1993 Aug; 38(8):1145-55. PubMed ID: 8367525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine.
    Ye SJ
    Med Phys; 1999 Nov; 26(11):2488-93. PubMed ID: 10587238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy.
    Yanch JC; Zhou XL; Brownell GL
    Radiat Res; 1991 Apr; 126(1):1-20. PubMed ID: 2020734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.
    Goorley JT; Kiger WS; Zamenhof RG
    Med Phys; 2002 Feb; 29(2):145-56. PubMed ID: 11865986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.
    Zamenhof RG; Clement SD; Harling OK; Brenner JF; Wazer DE; Madoc-Jones H; Yanch JC
    Basic Life Sci; 1990; 54():283-305. PubMed ID: 2268244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 meV proton-7Li reaction or from fission of 235U.
    Tanaka K; Kobayashi T; Sakurai Y; Nakagawa Y; Endo S; Hoshi M
    Phys Med Biol; 2001 Oct; 46(10):2681-95. PubMed ID: 11686282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The medical-irradiation characteristics for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.
    Sakurai Y; Kobayashi T
    Med Phys; 2002 Oct; 29(10):2328-37. PubMed ID: 12408307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerator-based epithermal neutron beam design for neutron capture therapy.
    Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE
    Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fundamental study on hyper-thermal neutrons for neutron capture therapy.
    Sakurai Y; Kobayashi T; Kanda K
    Phys Med Biol; 1994 Dec; 39(12):2217-27. PubMed ID: 15551549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).
    Clement SD; Choi JR; Zamenhof RG; Yanch JC; Harling OK
    Basic Life Sci; 1990; 54():51-69. PubMed ID: 2268248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system.
    Hu N; Tanaka H; Ono K
    Med Phys; 2022 Oct; 49(10):6609-6621. PubMed ID: 35941788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gadolinium neutron capture therapy for brain tumors: a computer study.
    Masiakowski JT; Horton JL; Peters LJ
    Med Phys; 1992; 19(5):1277-84. PubMed ID: 1435610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.