These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7644273)

  • 1. Inhibition of streptococcal growth, F-ATPase and pyrophosphatase by diphosphonates.
    Hsu MT; Sturr G; Curran TM; Marquis RE
    Oral Microbiol Immunol; 1995 Feb; 10(1):47-53. PubMed ID: 7644273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of family II pyrophosphatases by analogs of pyrophosphate and phosphate.
    Zyryanov AB; Lahti R; Baykov AA
    Biochemistry (Mosc); 2005 Aug; 70(8):908-12. PubMed ID: 16212547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of diphosphonates on the pyrophosphatase activity in Streptococcus mutans.
    Wöltgens JH; Bervoets TJ; De Vries W
    J Periodontal Res; 1977 Nov; 12(6):462-6. PubMed ID: 145485
    [No Abstract]   [Full Text] [Related]  

  • 4. Irreversible paraben inhibition of glycolysis by Streptococcus mutans GS-5.
    Ma Y; Marquis RE
    Lett Appl Microbiol; 1996 Nov; 23(5):329-33. PubMed ID: 8987716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triclosan inhibition of membrane enzymes and glycolysis of Streptococcus mutans in suspensions and biofilms.
    Phan TN; Marquis RE
    Can J Microbiol; 2006 Oct; 52(10):977-83. PubMed ID: 17110966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase.
    Rodrigues CO; Scott DA; Docampo R
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):759-66. PubMed ID: 10359662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis.
    Sutton SV; Marquis RE
    J Dent Res; 1987 Jun; 66(6):1095-8. PubMed ID: 2887601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of P-type membrane ATPase from Streptococcus mutans.
    Magalhães PP; Paulino TP; Thedei G; Ciancaglini P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Apr; 140(4):589-97. PubMed ID: 15763514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme.
    Baykov AA; Dubnova EB; Bakuleva NP; Evtushenko OA; Zhen RG; Rea PA
    FEBS Lett; 1993 Jul; 327(2):199-202. PubMed ID: 8392953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 100 kDa vanadate and lanzoprazole-sensitive ATPase from Streptococcus mutans membrane.
    Magalhães PP; Paulino TP; Thedei G; Larson RE; Ciancaglini P
    Arch Oral Biol; 2003 Dec; 48(12):815-24. PubMed ID: 14596871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial actions of benzimidazoles against oral streptococci.
    Nguyen PT; Baldeck JD; Olsson J; Marquis RE
    Oral Microbiol Immunol; 2005 Apr; 20(2):93-100. PubMed ID: 15720569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin.
    Bender GR; Thibodeau EA; Marquis RE
    J Dent Res; 1985 Feb; 64(2):90-5. PubMed ID: 2579114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of F1F0-ATPase in the growth of streptococcus mutans GS5.
    Suzuki T; Tagami J; Hanada N
    J Appl Microbiol; 2000 Apr; 88(4):555-62. PubMed ID: 10792513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cercospora beticola toxins. Part XVII. The role of the beticolin/Mg2+ complexes in their biological activity. Study of plasma membrane H(+)-ATPase, vacuolar H(+)-PPase, alkaline and acid phosphatases.
    Gomès E; Gordon-Weeks R; Simon-Plas F; Pugin A; Milat ML; Leigh RA; Blein JP
    Biochim Biophys Acta; 1996 Nov; 1285(1):38-46. PubMed ID: 8948473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of bivalent cations, phosphate and complexing substances on inorganic pyrophosphate in the microsomal fraction of isolated rat odontoblasts.
    Granström G
    Arch Oral Biol; 1983; 28(5):453-7. PubMed ID: 6138019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic killing of oral streptococci by reduced, transition metal cations.
    Dunning JC; Ma Y; Marquis RE
    Appl Environ Microbiol; 1998 Jan; 64(1):27-33. PubMed ID: 9435058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904.
    Kuhnert WL; Quivey RG
    J Bacteriol; 2003 Mar; 185(5):1525-33. PubMed ID: 12591869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite modification of acid tolerance of Streptococcus mutans GS-5.
    Belli WA; Marquis RE
    Oral Microbiol Immunol; 1994 Feb; 9(1):29-34. PubMed ID: 7478752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous monitoring of intracellular pH and proton excretion during glycolysis by Streptococcus mutans and Streptococcus sanguis: effect of low pH and fluoride.
    Iwami Y; Hata S; Schachtele CF; Yamada T
    Oral Microbiol Immunol; 1995 Dec; 10(6):355-9. PubMed ID: 8602343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermophysiology of Streptococcus mutans and related lactic-acid bacteria.
    Ma Y; Marquis RE
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):91-100. PubMed ID: 9298187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.