These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 7644535)
1. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Jongsma MA; Bakker PL; Peters J; Bosch D; Stiekema WJ Proc Natl Acad Sci U S A; 1995 Aug; 92(17):8041-5. PubMed ID: 7644535 [TBL] [Abstract][Full Text] [Related]
2. Adaptation of Spodoptera exigua (Lepidoptera: Noctuidae) to barley trypsin inhibitor BTI-CMe expressed in transgenic tobacco. Lara P; Ortego F; Gonzalez-Hidalgo E; Castañera P; Carbonero P; Diaz I Transgenic Res; 2000 Jun; 9(3):169-78. PubMed ID: 11032365 [TBL] [Abstract][Full Text] [Related]
3. The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. De Leo F; Gallerani R Insect Biochem Mol Biol; 2002 May; 32(5):489-96. PubMed ID: 11891125 [TBL] [Abstract][Full Text] [Related]
4. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. Paulillo LC; Lopes AR; Cristofoletti PT; Parra JR; Terra WR; Silva-Filho MC J Econ Entomol; 2000 Jun; 93(3):892-6. PubMed ID: 10902346 [TBL] [Abstract][Full Text] [Related]
5. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. Brioschi D; Nadalini LD; Bengtson MH; Sogayar MC; Moura DS; Silva-Filho MC Insect Biochem Mol Biol; 2007 Dec; 37(12):1283-90. PubMed ID: 17967347 [TBL] [Abstract][Full Text] [Related]
6. Colorado potato beetles show differential digestive compensatory responses to host plants expressing distinct sets of defense proteins. Rivard D; Cloutier C; Michaud D Arch Insect Biochem Physiol; 2004 Mar; 55(3):114-23. PubMed ID: 14981656 [TBL] [Abstract][Full Text] [Related]
7. Properties of purified gut trypsin from Helicoverpa zea, adapted to proteinase inhibitors. Volpicella M; Ceci LR; Cordewener J; America T; Gallerani R; Bode W; Jongsma MA; Beekwilder J Eur J Biochem; 2003 Jan; 270(1):10-9. PubMed ID: 12492470 [TBL] [Abstract][Full Text] [Related]
8. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Johnson R; Narvaez J; An G; Ryan C Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9871-5. PubMed ID: 2602379 [TBL] [Abstract][Full Text] [Related]
9. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene. Smigocki AC; Ivic-Haymes S; Li H; Savić J PLoS One; 2013; 8(2):e57303. PubMed ID: 23468963 [TBL] [Abstract][Full Text] [Related]
11. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Dunse KM; Stevens JA; Lay FT; Gaspar YM; Heath RL; Anderson MA Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15011-5. PubMed ID: 20696895 [TBL] [Abstract][Full Text] [Related]
12. Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Alvarez-Alfageme F; Martínez M; Pascual-Ruiz S; Castañera P; Diaz I; Ortego F Transgenic Res; 2007 Feb; 16(1):1-13. PubMed ID: 17072562 [TBL] [Abstract][Full Text] [Related]
13. Characterization of major midgut proteinase cDNAs from Helicoverpa armigera larvae and changes in gene expression in response to four proteinase inhibitors in the diet. Gatehouse LN; Shannon AL; Burgess EP; Christeller JT Insect Biochem Mol Biol; 1997 Nov; 27(11):929-44. PubMed ID: 9501417 [TBL] [Abstract][Full Text] [Related]
14. Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. De Leo F; Bonadé-Bottino M; Ceci LR; Gallerani R; Jouanin L Insect Biochem Mol Biol; 2001 Apr; 31(6-7):593-602. PubMed ID: 11267898 [TBL] [Abstract][Full Text] [Related]
15. Protein engineering of novel proteinase inhibitors and their effects on the growth of Spodoptera exigua larvae. Inanaga H; Kobayasi D; Kouzuma Y; Aoki-Yasunaga C; Iiyama K; Kimura M Biosci Biotechnol Biochem; 2001 Oct; 65(10):2259-64. PubMed ID: 11758918 [TBL] [Abstract][Full Text] [Related]
16. Adaptation of tobacco budworm Heliothis virescens to proteinase inhibitors may be mediated by the synthesis of new proteinases. Brito LO; Lopes AR; Parra JR; Terra WR; Silva-Filho MC Comp Biochem Physiol B Biochem Mol Biol; 2001 Feb; 128(2):365-75. PubMed ID: 11207448 [TBL] [Abstract][Full Text] [Related]
17. Insensitive trypsins are differentially transcribed during Spodoptera frugiperda adaptation against plant protease inhibitors. de Oliveira CF; de Paula Souza T; Parra JR; Marangoni S; Silva-Filho Mde C; Macedo ML Comp Biochem Physiol B Biochem Mol Biol; 2013 May; 165(1):19-25. PubMed ID: 23466392 [TBL] [Abstract][Full Text] [Related]
18. Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. Hafeez M; Li XW; Zhang JM; Zhang ZJ; Huang J; Wang LK; Khan MM; Shah S; Fernández-Grandon GM; Lu YB Insect Sci; 2021 Jun; 28(3):611-626. PubMed ID: 33629522 [TBL] [Abstract][Full Text] [Related]
19. Diverse forms of Pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Tamhane VA; Giri AP; Sainani MN; Gupta VS Gene; 2007 Nov; 403(1-2):29-38. PubMed ID: 17870253 [TBL] [Abstract][Full Text] [Related]
20. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Patankar AG; Giri AP; Harsulkar AM; Sainani MN; Deshpande VV; Ranjekar PK; Gupta VS Insect Biochem Mol Biol; 2001 Mar; 31(4-5):453-64. PubMed ID: 11222955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]