BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 7644649)

  • 1. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon.
    Baker JA; Kornguth PJ; Lo JY; Williford ME; Floyd CE
    Radiology; 1995 Sep; 196(3):817-22. PubMed ID: 7644649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural network: improving the quality of breast biopsy recommendations.
    Baker JA; Kornguth PJ; Lo JY; Floyd CE
    Radiology; 1996 Jan; 198(1):131-5. PubMed ID: 8539365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.
    Dietzel M; Baltzer PA; Dietzel A; Zoubi R; Gröschel T; Burmeister HP; Bogdan M; Kaiser WA
    Eur J Radiol; 2012 Jul; 81(7):1508-13. PubMed ID: 21459533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value.
    Lazarus E; Mainiero MB; Schepps B; Koelliker SL; Livingston LS
    Radiology; 2006 May; 239(2):385-91. PubMed ID: 16569780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided classification of BI-RADS category 3 breast lesions.
    Buchbinder SS; Leichter IS; Lederman RB; Novak B; Bamberger PN; Sklair-Levy M; Yarmish G; Fields SI
    Radiology; 2004 Mar; 230(3):820-3. PubMed ID: 14739315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast imaging reporting and data system standardized mammography lexicon: observer variability in lesion description.
    Baker JA; Kornguth PJ; Floyd CE
    AJR Am J Roentgenol; 1996 Apr; 166(4):773-8. PubMed ID: 8610547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of missing data in evaluating artificial neural networks trained on complete data.
    Markey MK; Tourassi GD; Margolis M; DeLong DM
    Comput Biol Med; 2006 May; 36(5):516-25. PubMed ID: 15893745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks.
    Lo JY; Baker JA; Kornguth PJ; Floyd CE
    Acad Radiol; 1999 Jan; 6(1):10-5. PubMed ID: 9891147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network analysis of breast cancer from MRI findings.
    Abdolmaleki P; Buadu LD; Murayama S; Murakami J; Hashiguchi N; Yabuuchi H; Masuda K
    Radiat Med; 1997; 15(5):283-93. PubMed ID: 9445150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Diagnostic value of a breast MRI score for the prediction of malignancy of breast lesions detected solely with MRI].
    Siegmann KC; Moron HU; Baur A; Hahn M; Vogel U; Claussen CD; Bitzer M
    Rofo; 2009 Jun; 181(6):556-63. PubMed ID: 19452398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced integrated technique in breast cancer thermography.
    Ng EY; Kee EC
    J Med Eng Technol; 2008; 32(2):103-14. PubMed ID: 17852648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability.
    Kim SM; Han H; Park JM; Choi YJ; Yoon HS; Sohn JH; Baek MH; Kim YN; Chae YM; June JJ; Lee J; Jeon YH
    J Digit Imaging; 2012 Oct; 25(5):599-606. PubMed ID: 22270787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study.
    Baltzer PA; Benndorf M; Dietzel M; Gajda M; Runnebaum IB; Kaiser WA
    AJR Am J Roentgenol; 2010 Jun; 194(6):1658-63. PubMed ID: 20489110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with BI-RADS lexicon.
    Bilska-Wolak AO; Floyd CE
    Med Phys; 2002 Sep; 29(9):2090-100. PubMed ID: 12349930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer.
    Wu Y; Giger ML; Doi K; Vyborny CJ; Schmidt RA; Metz CE
    Radiology; 1993 Apr; 187(1):81-7. PubMed ID: 8451441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution.
    Kuhl CK; Schild HH; Morakkabati N
    Radiology; 2005 Sep; 236(3):789-800. PubMed ID: 16118161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of artificial neural networks for the prediction of lymph node metastases to the ipsilateral axilla - initial experience in 194 patients using magnetic resonance mammography.
    Dietzel M; Baltzer PA; Dietzel A; Vag T; Gröschel T; Gajda M; Camara O; Kaiser WA
    Acta Radiol; 2010 Oct; 51(8):851-8. PubMed ID: 20707666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BI-RADS for sonography: positive and negative predictive values of sonographic features.
    Hong AS; Rosen EL; Soo MS; Baker JA
    AJR Am J Roentgenol; 2005 Apr; 184(4):1260-5. PubMed ID: 15788607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience.
    Burnside ES; Rubin DL; Fine JP; Shachter RD; Sisney GA; Leung WK
    Radiology; 2006 Sep; 240(3):666-73. PubMed ID: 16926323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The breast imaging reporting and data system: positive predictive value of mammographic features and final assessment categories.
    Liberman L; Abramson AF; Squires FB; Glassman JR; Morris EA; Dershaw DD
    AJR Am J Roentgenol; 1998 Jul; 171(1):35-40. PubMed ID: 9648759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.