These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7645132)

  • 1. The cavitation threshold of human tissue exposed to 0.2-MHz pulsed ultrasound: preliminary measurements based on a study of clinical lithotripsy.
    Coleman AJ; Kodama T; Choi MJ; Adams T; Saunders JE
    Ultrasound Med Biol; 1995; 21(3):405-17. PubMed ID: 7645132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1996; 22(8):1079-87. PubMed ID: 9004432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors Affecting Tissue Cavitation during Burst Wave Lithotripsy.
    Maxwell AD; Hunter C; Cunitz BW; Kreider W; Totten S; Wang YN
    Ultrasound Med Biol; 2021 Aug; 47(8):2286-2295. PubMed ID: 34078545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Quantitative evaluation of cavitation bubble fields induced by lithotripter shock waves].
    Luderer T; Bohris C; Bellemann ME
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():790-3. PubMed ID: 12465304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE; Leighton TG
    Ultrasound Med Biol; 1992; 18(3):267-81. PubMed ID: 1595133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The threshold for thermally significant cavitation in dog's thigh muscle in vivo.
    Hynynen K
    Ultrasound Med Biol; 1991; 17(2):157-69. PubMed ID: 2053212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloud cavitation control for lithotripsy using high intensity focused ultrasound.
    Ikeda T; Yoshizawa S; Tosaki M; Allen JS; Takagi S; Ohta N; Kitamura T; Matsumoto Y
    Ultrasound Med Biol; 2006 Sep; 32(9):1383-97. PubMed ID: 16965979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High intensity focused ultrasound lithotripsy with cavitating microbubbles.
    Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y
    Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking kidney stones in a homogeneous medium using a trilateration approach.
    Shoar K; Turney BW; Cleveland RO
    J Acoust Soc Am; 2017 Dec; 142(6):3715. PubMed ID: 29289106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Extracorporeal shockwave lithotripsy with combined ultrasound and roentgenologic calculus localization. Initial clinical experiences with the Lithostar plus].
    Zöller G; Wassmann K; Ludewig M; Blech M; Ringert RH
    Urologe A; 1990 Nov; 29(6):338-41. PubMed ID: 2291259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of resonant scattering to identify stone fracture in shock wave lithotripsy.
    Owen NR; Bailey MR; Crum LA; Sapozhnikov OA; Trusov LA
    J Acoust Soc Am; 2007 Jan; 121(1):EL41-7. PubMed ID: 17297825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
    Lokhandwalla M; McAteer JA; Williams JC; Sturtevant B
    Phys Med Biol; 2001 Apr; 46(4):1245-64. PubMed ID: 11324963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new transportable shock-wave lithotripsy machine for managing urinary stones: a single-centre experience with a dual-focus lithotripter.
    De Sio M; Autorino R; Quarto G; Mordente S; Giugliano F; Di Giacomo F; Neri F; Quattrone C; Sorrentino D; De Domenico R; D'Armiento M
    BJU Int; 2007 Nov; 100(5):1137-41. PubMed ID: 17550410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.