These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
769 related articles for article (PubMed ID: 7645595)
1. Use of fluorescence in situ hybridization to clarify a complex chromosomal rearrangement in a child with multiple congenital anomalies. Spikes AS; Hegmann K; Smith JL; Shaffer LG Am J Med Genet; 1995 May; 57(1):31-4. PubMed ID: 7645595 [TBL] [Abstract][Full Text] [Related]
2. A complex chromosome rearrangement with at least five breakpoints studied by fluorescence in situ hybridization. Gibson LH; McGrath J; Yang-Feng TL Am J Med Genet; 1997 Feb; 68(4):417-20. PubMed ID: 9021014 [TBL] [Abstract][Full Text] [Related]
3. Complex familial rearrangement of chromosome 9p24.3 detected by FISH. Repetto GM; Wagstaff J; Korf BR; Knoll JH Am J Med Genet; 1998 Apr; 76(4):306-9. PubMed ID: 9545094 [TBL] [Abstract][Full Text] [Related]
4. Molecular cytogenetic determination of a deletion/duplication of 1q that results in a trisomy 18 syndrome-like phenotype. Mewar R; Harrison W; Weaver DD; Palmer C; Davee MA; Overhauser J Am J Med Genet; 1994 Aug; 52(2):178-83. PubMed ID: 7802005 [TBL] [Abstract][Full Text] [Related]
5. De novo highly complex chromosome rearrangement (CCR) involving five breakpoints with congenital anomalies analyzed by FISH. Curotti G; Benkhalifa M; Raybaud C; Picard F; Bellec V; Qumsiyeh MB Genet Couns; 1999; 10(3):259-64. PubMed ID: 10546097 [TBL] [Abstract][Full Text] [Related]
6. Subtelomeric chromosomal rearrangements detected in patients with idiopathic mental retardation and dysmorphic features. Caliskan MO; Karauzum SB; Mihci E; Tacoy S; Luleci G Genet Couns; 2005; 16(2):129-38. PubMed ID: 16080292 [TBL] [Abstract][Full Text] [Related]
7. [Fluorescence in situ hybridization in 6 patients with alterations of chromosome 18 and in 7 with marker chromosomes]. Esmer MC; Carnevale A; Gómez L; del Castillo V; Frías S Rev Invest Clin; 1996; 48(1):27-33. PubMed ID: 8815483 [TBL] [Abstract][Full Text] [Related]
8. A dysmorphic newborn infant with a complex rearrangement involving chromosomes 2, 4, and 6 detected by fluorescence in situ hybridization (FISH). Hoffman DJ; Punnett HH; Pyeritz RE Am J Perinatol; 2004 Feb; 21(2):69-71. PubMed ID: 15017469 [TBL] [Abstract][Full Text] [Related]
9. FISH analysis of a complex chromosome rearrangement involving nine breakpoints on chromosomes 6, 12, 14 and 16. Phelan MC; Blackburn W; Rogers RC; Crawford EC; Cooley NR; Schrock E; Ning Y; Ried T Prenat Diagn; 1998 Nov; 18(11):1174-80. PubMed ID: 9854728 [TBL] [Abstract][Full Text] [Related]
10. Clinical applications of two-color telomeric fluorescence in situ hybridization for prenatal diagnosis: identification of chromosomal translocation in five families with recurrent miscarriages or a child with multiple congenital anomalies. Wakui K; Tanemura M; Suzumori K; Hidaka E; Ishikawa M; Kubota T; Fukushima Y J Hum Genet; 1999; 44(2):85-90. PubMed ID: 10083730 [TBL] [Abstract][Full Text] [Related]
11. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia. Zhang L; Parkhurst JB; Kern WF; Scott KV; Niccum D; Mulvihill JJ; Li S Chin Med J (Engl); 2003 Sep; 116(9):1298-303. PubMed ID: 14527352 [TBL] [Abstract][Full Text] [Related]
12. Monosomy 1p36.31-33-->pter due to a paternal reciprocal translocation: prognostic significance of FISH analysis. Blennow E; Bui TH; Wallin A; Kogner P Am J Med Genet; 1996 Oct; 65(1):60-7. PubMed ID: 8914743 [TBL] [Abstract][Full Text] [Related]
13. Molecular and cytogenetic characterization of 9p- abnormalities. Teebi AS; Gibson L; McGrath J; Meyn MS; Breg WR; Yang-Feng TL Am J Med Genet; 1993 May; 46(3):288-92. PubMed ID: 8488873 [TBL] [Abstract][Full Text] [Related]
14. Interstitial deletion of the distal long arm of chromosome 4, del (4)(q33-q35), in association with paternal balanced translocation. Mdzin R; Ko C; Abdul Latif Z; Zakaria Z Singapore Med J; 2008 Nov; 49(11):e336-9. PubMed ID: 19037546 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the recurrent translocation t(1;1)(p36.3;q21.1-2) in non-Hodgkin lymphoma by multicolor banding and fluorescence in situ hybridization analysis. Lestou VS; Ludkovski O; Connors JM; Gascoyne RD; Lam WL; Horsman DE Genes Chromosomes Cancer; 2003 Apr; 36(4):375-81. PubMed ID: 12619161 [TBL] [Abstract][Full Text] [Related]
16. Use of fluorescence in situ hybridization to confirm the interpretation of a balanced complex chromosome rearrangement ascertained through prenatal diagnosis. Wang H; McLaughlin M; Thompson C; Hunter AG Am J Med Genet; 1993 Jun; 46(5):559-62. PubMed ID: 8322821 [TBL] [Abstract][Full Text] [Related]
17. Identification of autosomal supernumerary chromosome markers (SMCs) by fluorescent in situ hybridization (FISH). Kolialexi A; Kitsiou S; Fryssira H; Sofocleous C; Kouvidi E; Tsangaris GT; Salavoura K; Mavrou A In Vivo; 2006; 20(4):473-8. PubMed ID: 16900777 [TBL] [Abstract][Full Text] [Related]
18. Chromosome instability in ICF syndrome: formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization. Sawyer JR; Swanson CM; Wheeler G; Cunniff C Am J Med Genet; 1995 Mar; 56(2):203-9. PubMed ID: 7625446 [TBL] [Abstract][Full Text] [Related]
19. Trisomy 22 confirmed by fluorescent in situ hybridization. Stratton RF; DuPont BR; Mattern VL; Young RS; McCourt JW; Moore CM Am J Med Genet; 1993 Apr; 46(1):109-12. PubMed ID: 8494030 [TBL] [Abstract][Full Text] [Related]
20. 10p duplication characterized by fluorescence in situ hybridization. Wiktor A; Feldman GL; Kratkoczki P; Ditmars DM; Van Dyke DL Am J Med Genet; 1994 Sep; 52(3):315-8. PubMed ID: 7528972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]