BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

773 related articles for article (PubMed ID: 7645595)

  • 1. Use of fluorescence in situ hybridization to clarify a complex chromosomal rearrangement in a child with multiple congenital anomalies.
    Spikes AS; Hegmann K; Smith JL; Shaffer LG
    Am J Med Genet; 1995 May; 57(1):31-4. PubMed ID: 7645595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complex chromosome rearrangement with at least five breakpoints studied by fluorescence in situ hybridization.
    Gibson LH; McGrath J; Yang-Feng TL
    Am J Med Genet; 1997 Feb; 68(4):417-20. PubMed ID: 9021014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex familial rearrangement of chromosome 9p24.3 detected by FISH.
    Repetto GM; Wagstaff J; Korf BR; Knoll JH
    Am J Med Genet; 1998 Apr; 76(4):306-9. PubMed ID: 9545094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cytogenetic determination of a deletion/duplication of 1q that results in a trisomy 18 syndrome-like phenotype.
    Mewar R; Harrison W; Weaver DD; Palmer C; Davee MA; Overhauser J
    Am J Med Genet; 1994 Aug; 52(2):178-83. PubMed ID: 7802005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo highly complex chromosome rearrangement (CCR) involving five breakpoints with congenital anomalies analyzed by FISH.
    Curotti G; Benkhalifa M; Raybaud C; Picard F; Bellec V; Qumsiyeh MB
    Genet Couns; 1999; 10(3):259-64. PubMed ID: 10546097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtelomeric chromosomal rearrangements detected in patients with idiopathic mental retardation and dysmorphic features.
    Caliskan MO; Karauzum SB; Mihci E; Tacoy S; Luleci G
    Genet Couns; 2005; 16(2):129-38. PubMed ID: 16080292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fluorescence in situ hybridization in 6 patients with alterations of chromosome 18 and in 7 with marker chromosomes].
    Esmer MC; Carnevale A; Gómez L; del Castillo V; Frías S
    Rev Invest Clin; 1996; 48(1):27-33. PubMed ID: 8815483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dysmorphic newborn infant with a complex rearrangement involving chromosomes 2, 4, and 6 detected by fluorescence in situ hybridization (FISH).
    Hoffman DJ; Punnett HH; Pyeritz RE
    Am J Perinatol; 2004 Feb; 21(2):69-71. PubMed ID: 15017469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FISH analysis of a complex chromosome rearrangement involving nine breakpoints on chromosomes 6, 12, 14 and 16.
    Phelan MC; Blackburn W; Rogers RC; Crawford EC; Cooley NR; Schrock E; Ning Y; Ried T
    Prenat Diagn; 1998 Nov; 18(11):1174-80. PubMed ID: 9854728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical applications of two-color telomeric fluorescence in situ hybridization for prenatal diagnosis: identification of chromosomal translocation in five families with recurrent miscarriages or a child with multiple congenital anomalies.
    Wakui K; Tanemura M; Suzumori K; Hidaka E; Ishikawa M; Kubota T; Fukushima Y
    J Hum Genet; 1999; 44(2):85-90. PubMed ID: 10083730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia.
    Zhang L; Parkhurst JB; Kern WF; Scott KV; Niccum D; Mulvihill JJ; Li S
    Chin Med J (Engl); 2003 Sep; 116(9):1298-303. PubMed ID: 14527352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monosomy 1p36.31-33-->pter due to a paternal reciprocal translocation: prognostic significance of FISH analysis.
    Blennow E; Bui TH; Wallin A; Kogner P
    Am J Med Genet; 1996 Oct; 65(1):60-7. PubMed ID: 8914743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and cytogenetic characterization of 9p- abnormalities.
    Teebi AS; Gibson L; McGrath J; Meyn MS; Breg WR; Yang-Feng TL
    Am J Med Genet; 1993 May; 46(3):288-92. PubMed ID: 8488873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial deletion of the distal long arm of chromosome 4, del (4)(q33-q35), in association with paternal balanced translocation.
    Mdzin R; Ko C; Abdul Latif Z; Zakaria Z
    Singapore Med J; 2008 Nov; 49(11):e336-9. PubMed ID: 19037546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the recurrent translocation t(1;1)(p36.3;q21.1-2) in non-Hodgkin lymphoma by multicolor banding and fluorescence in situ hybridization analysis.
    Lestou VS; Ludkovski O; Connors JM; Gascoyne RD; Lam WL; Horsman DE
    Genes Chromosomes Cancer; 2003 Apr; 36(4):375-81. PubMed ID: 12619161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of fluorescence in situ hybridization to confirm the interpretation of a balanced complex chromosome rearrangement ascertained through prenatal diagnosis.
    Wang H; McLaughlin M; Thompson C; Hunter AG
    Am J Med Genet; 1993 Jun; 46(5):559-62. PubMed ID: 8322821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of autosomal supernumerary chromosome markers (SMCs) by fluorescent in situ hybridization (FISH).
    Kolialexi A; Kitsiou S; Fryssira H; Sofocleous C; Kouvidi E; Tsangaris GT; Salavoura K; Mavrou A
    In Vivo; 2006; 20(4):473-8. PubMed ID: 16900777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome instability in ICF syndrome: formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization.
    Sawyer JR; Swanson CM; Wheeler G; Cunniff C
    Am J Med Genet; 1995 Mar; 56(2):203-9. PubMed ID: 7625446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trisomy 22 confirmed by fluorescent in situ hybridization.
    Stratton RF; DuPont BR; Mattern VL; Young RS; McCourt JW; Moore CM
    Am J Med Genet; 1993 Apr; 46(1):109-12. PubMed ID: 8494030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 10p duplication characterized by fluorescence in situ hybridization.
    Wiktor A; Feldman GL; Kratkoczki P; Ditmars DM; Van Dyke DL
    Am J Med Genet; 1994 Sep; 52(3):315-8. PubMed ID: 7528972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.