BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7645672)

  • 1. Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization.
    Koehler U; Arnold N; Wienberg J; Tofanelli S; Stanyon R
    Am J Phys Anthropol; 1995 May; 97(1):37-47. PubMed ID: 7645672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting.
    Koehler U; Bigoni F; Wienberg J; Stanyon R
    Genomics; 1995 Nov; 30(2):287-92. PubMed ID: 8586429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A comparative chromosome map between human and Hylobates hoolock built by chromosome painting].
    Yu D; Yang F; Liu R
    Yi Chuan Xue Bao; 1997 Oct; 24(5):417-23. PubMed ID: 9494294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting.
    Jauch A; Wienberg J; Stanyon R; Arnold N; Tofanelli S; Ishida T; Cremer T
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8611-5. PubMed ID: 1528869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-species colour segmenting: a novel tool in human karyotype analysis.
    Müller S; O'Brien PC; Ferguson-Smith MA; Wienberg J
    Cytometry; 1998 Dec; 33(4):445-52. PubMed ID: 9845439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescene in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system.
    Bigoni F; Koehler U; Stanyon R; Ishida T; Wienberg J
    Am J Phys Anthropol; 1997 Mar; 102(3):315-27. PubMed ID: 9098501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ hybridization (FISH) maps chromosomal homologies between Alouatta belzebul (Platyrrhini, Cebidae) and other primates and reveals extensive interchromosomal rearrangements between howler monkey genomes.
    Consigliere S; Stanyon R; Koehler U; Arnold N; Wienberg J
    Am J Primatol; 1998; 46(2):119-33. PubMed ID: 9773675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids.
    Frönicke L; Wienberg J
    Mamm Genome; 2001 Jun; 12(6):442-9. PubMed ID: 11353391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes.
    Nie W; Rens W; Wang J; Yang F
    Cytogenet Cell Genet; 2001; 92(3-4):248-53. PubMed ID: 11435697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps.
    Yang F; O'Brien PC; Milne BS; Graphodatsky AS; Solanky N; Trifonov V; Rens W; Sargan D; Ferguson-Smith MA
    Genomics; 1999 Dec; 62(2):189-202. PubMed ID: 10610712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A classification efficiency test of spectral karyotyping and multiplex fluorescence in situ hybridization: identification of chromosome homologies between Homo sapiens and Hylobates leucogenys.
    Rens W; Yang F; O'Brien PC; Solanky N; Ferguson-Smith MA
    Genes Chromosomes Cancer; 2001 May; 31(1):65-74. PubMed ID: 11284037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping homology between human and black and white colobine monkey chromosomes by fluorescent in situ hybridization.
    Bigoni F; Stanyon R; Koehler U; Morescalchi AM; Wienberg J
    Am J Primatol; 1997; 42(4):289-98. PubMed ID: 9261510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence in situ hybridization (FISH) maps chromosomal homologies between the dusky titi and squirrel monkey.
    Stanyon R; Consigliere S; Müller S; Morescalchi A; Neusser M; Wienberg J
    Am J Primatol; 2000 Feb; 50(2):95-107. PubMed ID: 10676707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative karyotyping of our gibbon species or subspecies (author's transl)].
    Couturier J; Dutrillaux B; Turleau C; de Grouchy J
    Ann Genet; 1982; 25(1):5-10. PubMed ID: 6979300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of complex chromosome rearrangements in the gibbon by fluorescent in situ hybridization (FISH) of a human chromosome 2q specific microlibrary, yeast artificial chromosomes, and reciprocal chromosome painting.
    Arnold N; Stanyon R; Jauch A; O'Brien P; Wienberg J
    Cytogenet Cell Genet; 1996; 74(1-2):80-5. PubMed ID: 8893807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding.
    Mrasek K; Heller A; Rubtsov N; Trifonov V; Starke H; Claussen U; Liehr T
    Int J Mol Med; 2003 Aug; 12(2):139-46. PubMed ID: 12851708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genome map of human and cattle.
    Solinas-Toldo S; Lengauer C; Fries R
    Genomics; 1995 Jun; 27(3):489-96. PubMed ID: 7558031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid ape offspring of a mating of gibbon and siamang.
    Myers RH; Shafer DA
    Science; 1979 Jul; 205(4403):308-10. PubMed ID: 451603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization.
    Dumas F; Bigoni F; Stone G; Sineo L; Stanyon R
    Chromosome Res; 2005; 13(1):85-96. PubMed ID: 15791414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.
    Misceo D; Capozzi O; Roberto R; Dell'oglio MP; Rocchi M; Stanyon R; Archidiacono N
    Genome Res; 2008 Sep; 18(9):1530-7. PubMed ID: 18552313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.