These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 7646016)

  • 1. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.
    Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC
    Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme.
    Fernández PS; Peck MW
    Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum.
    Peck MW; Fernandez PS
    Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin.
    Lindström M; Mokkila M; Skyttä E; Hyytiä-Trees E; Lähteenmäki L; Hielm S; Ahvenainen R; Korkeala H
    J Food Prot; 2001 Jun; 64(6):838-44. PubMed ID: 11403135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.
    Carlin F; Peck MW
    Appl Environ Microbiol; 1996 Aug; 62(8):3069-72. PubMed ID: 8702303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth from spores of nonproteolytic Clostridium botulinum in heat-treated vegetable juice.
    Stringer SC; Haque N; Peck MW
    Appl Environ Microbiol; 1999 May; 65(5):2136-42. PubMed ID: 10224012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonproteolytic Clostridium botulinum toxigenesis in cooked turkey stored under modified atmospheres.
    Lawlor KA; Pierson MD; Hackney CR; Claus JR; Marcy JE
    J Food Prot; 2000 Nov; 63(11):1511-6. PubMed ID: 11079692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products.
    Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H
    Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F.
    Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR
    J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum.
    Stringer SC; Fairbairn DA; Peck MW
    J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change of thermal inactivation of Clostridium botulinum spores during rice cooking.
    Konagaya Y; Urakami H; Hoshino J; Kobayashi A; Sasagawa A; Yamazaki A; Kozaki S; Tanaka N
    J Food Prot; 2009 Nov; 72(11):2400-6. PubMed ID: 19903408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C.
    Lund BM; Graham AF; George SM
    J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive Model Describing the Effect of Prolonged Heating at 70 to 80°C and Incubation at Refrigeration Temperatures on Growth and Toxigenesis by Nonproteolylic Clostridium botulinum.
    Fernández PS; Peck MW
    J Food Prot; 1997 Sep; 60(9):1064-1071. PubMed ID: 31207839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance.
    Wachnicka E; Stringer SC; Barker GC; Peck MW
    Appl Environ Microbiol; 2016 Oct; 82(19):6019-29. PubMed ID: 27474721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF
    Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.