These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 7646016)
21. Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life. Lund BM; Peck MW Soc Appl Bacteriol Symp Ser; 1994; 23():115S-128S. PubMed ID: 8047905 [No Abstract] [Full Text] [Related]
22. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Graham AF; Mason DR; Maxwell FJ; Peck MW Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311 [TBL] [Abstract][Full Text] [Related]
23. Combined high pressure and thermal processing on inactivation of type E and nonproteolytic type B and F spores of Clostridium botulinum. Skinner GE; Marshall KM; Morrissey TR; Loeza V; Patazca E; Reddy NR; Larkin JW J Food Prot; 2014 Dec; 77(12):2054-61. PubMed ID: 25474050 [TBL] [Abstract][Full Text] [Related]
24. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM; Young-Perkins KE; Merson RL Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489 [TBL] [Abstract][Full Text] [Related]
25. The combined effect of sub-optimal temperature and sub-optimal pH on growth and toxin formation from spores of Clostridium botulinum. Graham AF; Lund BM J Appl Bacteriol; 1987 Nov; 63(5):387-93. PubMed ID: 3326865 [TBL] [Abstract][Full Text] [Related]
26. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum. Reddy NR; Marshall KM; Morrissey TR; Loeza V; Patazca E; Skinner GE; Krishnamurthy K; Larkin JW J Food Prot; 2013 Aug; 76(8):1384-92. PubMed ID: 23905794 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of nonproteolytic Clostridium botulinum with lactic acid bacteria and their bacteriocins at refrigeration temperatures. Rodgers S; Peiris P; Casadei G J Food Prot; 2003 Apr; 66(4):674-8. PubMed ID: 12696695 [TBL] [Abstract][Full Text] [Related]
28. Evidence for Bacillus cereus Spores as the Target Pathogen in Thermally Processed Extended Shelf Life Refrigerated Foods. Reddy NR; Morrissey TR; Aguilar VL; Schill KM; Skinner GE J Food Prot; 2021 Mar; 84(3):442-448. PubMed ID: 33125074 [TBL] [Abstract][Full Text] [Related]
29. Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables. Austin JW; Dodds KL; Blanchfield B; Farber JM J Food Prot; 1998 Mar; 61(3):324-8. PubMed ID: 9708304 [TBL] [Abstract][Full Text] [Related]
30. Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat. Christiansen LN; Johnston RW; Kautter DA; Howard JW; Aunan WJ Appl Microbiol; 1973 Mar; 25(3):357-62. PubMed ID: 4572891 [TBL] [Abstract][Full Text] [Related]
31. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails. Lyon WJ; Reddmann CS J Food Prot; 2000 Dec; 63(12):1687-96. PubMed ID: 11131892 [TBL] [Abstract][Full Text] [Related]
32. Growth and toxin production of Clostridium botulinum types E, nonproteolytic B, and F in nonirradiated and irradiated fisheries products in the temperature range of 36 degrees to 72 degrees F. TID-24881. Eklund MW; Poysky FT; Wieler DI TID Rep; 1966 Jan; ():1-86. PubMed ID: 4905224 [No Abstract] [Full Text] [Related]
33. Investigation of the ability of proteolytic Clostridium botulinum to multiply and produce toxin in fresh Italian pasta. Del Torre M; Stecchini ML; Peck MW J Food Prot; 1998 Aug; 61(8):988-93. PubMed ID: 9713759 [TBL] [Abstract][Full Text] [Related]
34. Botulism challenge studies of a modified atmosphere package for fresh mussels: inoculated pack studies. Newell CR; Ma L; Doyle M J Food Prot; 2012 Jun; 75(6):1157-66. PubMed ID: 22691489 [TBL] [Abstract][Full Text] [Related]
35. Toxin production by Clostridium botulinum in pasteurized milk treated with carbon dioxide. Glass KA; Kaufman KM; Smith AL; Johnson EA; Chen JH; Hotchkiss J J Food Prot; 1999 Aug; 62(8):872-6. PubMed ID: 10456739 [TBL] [Abstract][Full Text] [Related]
36. Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1977 Jul; 34(1):23-9. PubMed ID: 329760 [TBL] [Abstract][Full Text] [Related]
37. Survival studies with spores of Clostridium botulinum type E in pasteurized meat of the blue crab Callinectes sapidus. Cockey RR; Tatro MC Appl Microbiol; 1974 Apr; 27(4):629-33. PubMed ID: 4596746 [TBL] [Abstract][Full Text] [Related]
38. [Growth of Clostridium botulinum in media with garlic (Allium sativum)]. Giménez MA; Solanes RE; Giménez DF Rev Argent Microbiol; 1988; 20(1):17-24. PubMed ID: 3051126 [TBL] [Abstract][Full Text] [Related]
39. Gamma-ray sterilization and residual toxicity studies of ground beef inoculated with spores of Clostridium botulinum. KEMPE LL; GRAIKOSKI JT Appl Microbiol; 1962 Jan; 10(1):31-6. PubMed ID: 14455088 [TBL] [Abstract][Full Text] [Related]
40. Effect of lysozyne on the recovery of heated Clostridium botulinum spores. Alderton G; Chen JK; Ito KA Appl Microbiol; 1974 Mar; 27(3):613-5. PubMed ID: 4596393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]