BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 7646158)

  • 1. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets?
    Christie GW; Barratt-Boyes BG
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S195-9. PubMed ID: 7646158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques.
    Mayne AS; Christie GW; Smaill BH; Hunter PJ; Barratt-Boyes BG
    J Thorac Cardiovasc Surg; 1989 Aug; 98(2):170-80. PubMed ID: 2755150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation on function.
    Christie GW
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S25-32; discussion S33. PubMed ID: 1389275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue-induced changes to the biaxial mechanical properties of glutaraldehyde-fixed porcine aortic valve leaflets.
    Christie GW; Gross JF; Eberhardt CE
    Semin Thorac Cardiovasc Surg; 1999 Oct; 11(4 Suppl 1):201-5. PubMed ID: 10660193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart valve tissue.
    Talman EA; Boughner DR
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S369-73. PubMed ID: 7646190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements.
    Vesely I; Boughner D
    J Biomech; 1989; 22(6-7):655-71. PubMed ID: 2509479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach to the optimization of preparation of bioprosthetic heart valves.
    Mavrilas D; Missirlis Y
    J Biomech; 1991; 24(5):331-9. PubMed ID: 1904875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of the pulmonary autograft valve in the aortic position.
    Gorczynski A; Trenkner M; Anisimowicz L; Gutkowski R; Drapella A; Kwiatkowska E; Dobke M
    Thorax; 1982 Jul; 37(7):535-9. PubMed ID: 7135295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves.
    Myles V; Liao J; Warnock JN
    J Biomech Eng; 2014 Jan; 136(1):011011. PubMed ID: 24240552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement?
    David H; Boughner DR; Vesely I; Gerosa G
    ASAIO J; 1994; 40(2):206-12. PubMed ID: 8003760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic aortic pressure affects the biological properties of porcine pulmonary valve leaflets.
    Ikhumetse JD; Konduri S; Warnock JN; Xing Y; Yoganathand AP
    J Heart Valve Dis; 2006 Mar; 15(2):295-302. PubMed ID: 16607914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pulmonary bioprosthetic heart valve: its unsuitability for use as an aortic valve replacement.
    Jennings LM; Butterfield M; Booth C; Watterson KG; Fisher J
    J Heart Valve Dis; 2002 Sep; 11(5):668-78; discussion 679. PubMed ID: 12358404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical and structural properties of the explanted bioprosthetic valve leaflets.
    Purinya B; Kasyanov V; Volkolakov J; Latsis R; Tetere G
    J Biomech; 1994 Jan; 27(1):1-11. PubMed ID: 8106530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glutaraldehyde-stabilized porcine aortic valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material.
    Lee JM; Boughner DR; Courtman DW
    J Biomed Mater Res; 1984 Jan; 18(1):79-98. PubMed ID: 6421823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.