These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 7646190)

  • 1. Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart valve tissue.
    Talman EA; Boughner DR
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S369-73. PubMed ID: 7646190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function.
    Talman EA; Boughner DR
    J Heart Valve Dis; 1996 Mar; 5(2):152-9. PubMed ID: 8665007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of altered hydration on the internal shear properties of porcine aortic valve cusps.
    Talman EA; Boughner DR
    Ann Thorac Surg; 2001 May; 71(5 Suppl):S375-8. PubMed ID: 11388228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets?
    Christie GW; Barratt-Boyes BG
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S195-9. PubMed ID: 7646158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements.
    Vesely I; Boughner D
    J Biomech; 1989; 22(6-7):655-71. PubMed ID: 2509479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration.
    Duncan AC; Boughner D; Vesely I
    J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pericardial bioprosthesis: altered tissue shear properties following glutaraldehyde fixation.
    Boughner DR; Haldenby M; Hui AJ; Dunmore-Buyze J; Talman EA; Wan WK
    J Heart Valve Dis; 2000 Nov; 9(6):752-60. PubMed ID: 11128780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-Linear Viscoelastic theory applied to internal shearing of porcine aortic valve leaflets.
    Carew EO; Talman EA; Boughner DR; Vesely I
    J Biomech Eng; 1999 Aug; 121(4):386-92. PubMed ID: 10464692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dynamic fixation on shear behaviour of porcine xenograft valves.
    Song T; Vesely I; Boughner D
    Biomaterials; 1990 Apr; 11(3):191-6. PubMed ID: 2350557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is zero-pressure fixation of bioprosthetic valves truly stress free?
    Vesely I; Lozon A; Talman E
    J Thorac Cardiovasc Surg; 1993 Aug; 106(2):288-98. PubMed ID: 8341070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to the optimization of preparation of bioprosthetic heart valves.
    Mavrilas D; Missirlis Y
    J Biomech; 1991; 24(5):331-9. PubMed ID: 1904875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromechanics and mathematical modeling: an inside look at bioprosthetic valve function.
    Vesely I; Krucinski S; Campbell G
    J Card Surg; 1992 Mar; 7(1):85-95. PubMed ID: 1554981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic glutaraldehyde fixation of a porcine aortic valve xenograft. I. Effect of fixation conditions on the final tissue viscoelastic properties.
    Duncan AC; Boughner D; Vesely I
    Biomaterials; 1996 Oct; 17(19):1849-56. PubMed ID: 8889064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Biomed Mater Res A; 2003 Sep; 66(4):755-63. PubMed ID: 12926026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II--A structural constitutive model.
    Billiar KL; Sacks MS
    J Biomech Eng; 2000 Aug; 122(4):327-35. PubMed ID: 11036555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pulmonary bioprosthetic heart valve: its unsuitability for use as an aortic valve replacement.
    Jennings LM; Butterfield M; Booth C; Watterson KG; Fisher J
    J Heart Valve Dis; 2002 Sep; 11(5):668-78; discussion 679. PubMed ID: 12358404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis.
    Broom ND; Thomson FJ
    Thorax; 1979 Apr; 34(2):166-76. PubMed ID: 113899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.