These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7646191)

  • 41. The mechanical properties of porcine aortic valve tissues.
    Sauren AA; van Hout MC; van Steenhoven AA; Veldpaus FE; Janssen JD
    J Biomech; 1983; 16(5):327-37. PubMed ID: 6885834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finding the ideal biomaterial for aortic valve repair with ex vivo porcine left heart simulator and finite element modeling.
    Toeg HD; Abessi O; Al-Atassi T; de Kerchove L; El-Khoury G; Labrosse M; Boodhwani M
    J Thorac Cardiovasc Surg; 2014 Oct; 148(4):1739-1745.e1. PubMed ID: 24930607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aortic valve mechanics--Part I: material properties of natural porcine aortic valves.
    Missirlis YF; Chong M
    J Bioeng; 1978 Jun; 2(3-4):287-300. PubMed ID: 711721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the Biaxial Mechanical Response of Porcine Tricuspid Valve Leaflets.
    Amini Khoiy K; Amini R
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27538260
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of 2-amino oleic acid exposure conditions on the inhibition of calcification of glutaraldehyde cross-linked porcine aortic valves.
    Chen W; Kim JD; Schoen FJ; Levy RJ
    J Biomed Mater Res; 1994 Dec; 28(12):1485-95. PubMed ID: 7876288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.
    Lei Y; Masjedi S; Ferdous Z
    J Mech Behav Biomed Mater; 2017 Nov; 75():351-358. PubMed ID: 28783560
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Planar biaxial testing of heart valve cusp replacement biomaterials: Experiments, theory and material constants.
    Labrosse MR; Jafar R; Ngu J; Boodhwani M
    Acta Biomater; 2016 Nov; 45():303-320. PubMed ID: 27570204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Surgical pathology analysis of the causes of failure of 48 bioprosthetic heart valves in 40 Chinese cases].
    Duan XJ; Wang HY; Xu JP; Li L; Xu HY; Wang QZ
    Zhonghua Wai Ke Za Zhi; 2016 Sep; 54(9):710-5. PubMed ID: 27587216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hemodynamic Performance of Endovascular Valves as Valve-in-Valve in Small Stented Bioprosthesis.
    Kuehnel RU; Hartrumpf M; Erb M; Albes JM
    Thorac Cardiovasc Surg; 2017 Apr; 65(3):225-230. PubMed ID: 27517167
    [No Abstract]   [Full Text] [Related]  

  • 50. Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading.
    Wells SM; Sacks MS
    Biomaterials; 2002 Jun; 23(11):2389-99. PubMed ID: 12013187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Porcine pulmonary and aortic valves: a comparison of their tensile viscoelastic properties at physiological strain rates.
    Leeson-Dietrich J; Boughner D; Vesely I
    J Heart Valve Dis; 1995 Jan; 4(1):88-94. PubMed ID: 7742995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The glutaraldehyde-stabilized porcine aortic valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material.
    Lee JM; Boughner DR; Courtman DW
    J Biomed Mater Res; 1984 Jan; 18(1):79-98. PubMed ID: 6421823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of decellularisation on the real time mechanical fatigue of porcine aortic heart valve roots.
    Desai A; Ingham E; Berry HE; Fisher J; Jennings LM
    PLoS One; 2022; 17(4):e0265763. PubMed ID: 35363787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts.
    Barone A; Benktander J; Teneberg S; Breimer ME
    Xenotransplantation; 2014; 21(6):510-22. PubMed ID: 25041314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Bayesian constitutive model selection framework for biaxial mechanical testing of planar soft tissues: Application to porcine aortic valves.
    Aggarwal A; Hudson LT; Laurence DW; Lee CH; Pant S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105657. PubMed ID: 36634438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On stress reduction in bioprosthetic heart valve leaflets by the use of a flexible stent.
    Christie GW; Barratt-Boyes BG
    J Card Surg; 1991 Dec; 6(4):476-81. PubMed ID: 1815772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of mechanical stresses on closed cusps of porcine bioprosthetic valves: effects of stiffening, focal calcium and focal thinning.
    Sabbah HN; Hamid MS; Stein PD
    Am J Cardiol; 1985 Apr; 55(8):1091-6. PubMed ID: 3984872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fatigue-induced changes to the biaxial mechanical properties of glutaraldehyde-fixed porcine aortic valve leaflets.
    Christie GW; Gross JF; Eberhardt CE
    Semin Thorac Cardiovasc Surg; 1999 Oct; 11(4 Suppl 1):201-5. PubMed ID: 10660193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.