These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 7646896)
1. Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Wang JH; Kelly PT Neuron; 1995 Aug; 15(2):443-52. PubMed ID: 7646896 [TBL] [Abstract][Full Text] [Related]
2. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. Wang JH; Kelly PT J Neurophysiol; 1997 Nov; 78(5):2707-16. PubMed ID: 9356420 [TBL] [Abstract][Full Text] [Related]
3. Regulation of synaptic facilitation by postsynaptic Ca2+/CaM pathways in hippocampal CA1 neurons. Wang JH; Kelly PT J Neurophysiol; 1996 Jul; 76(1):276-86. PubMed ID: 8836224 [TBL] [Abstract][Full Text] [Related]
4. Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. Wang JH; Kelly PT J Neurosci; 1997 Jun; 17(12):4600-11. PubMed ID: 9169521 [TBL] [Abstract][Full Text] [Related]
5. Calcium-calmodulin signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal, fast spiking rat hippocampal CA1 neurons. Wang JH; Kelly P J Physiol; 2001 Jun; 533(Pt 2):407-22. PubMed ID: 11389201 [TBL] [Abstract][Full Text] [Related]
6. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus. Wu J; Huang KP; Huang FL J Neurochem; 2003 Sep; 86(6):1524-33. PubMed ID: 12950461 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide acts as a postsynaptic signaling molecule in calcium/calmodulin-induced synaptic potentiation in hippocampal CA1 pyramidal neurons. Ko GY; Kelly PT J Neurosci; 1999 Aug; 19(16):6784-94. PubMed ID: 10436036 [TBL] [Abstract][Full Text] [Related]
8. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. Yang HW; Hu XD; Zhang HM; Xin WJ; Li MT; Zhang T; Zhou LJ; Liu XG J Neurophysiol; 2004 Mar; 91(3):1122-33. PubMed ID: 14586032 [TBL] [Abstract][Full Text] [Related]
10. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589 [TBL] [Abstract][Full Text] [Related]
11. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor. Sanhueza M; McIntyre CC; Lisman JE J Neurosci; 2007 May; 27(19):5190-9. PubMed ID: 17494705 [TBL] [Abstract][Full Text] [Related]
12. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602 [TBL] [Abstract][Full Text] [Related]
13. The balance between postsynaptic Ca(2+)-dependent protein kinase and phosphatase activities controlling synaptic strength. Wang JH; Kelly PT Learn Mem; 1996; 3(2-3):170-81. PubMed ID: 10456087 [TBL] [Abstract][Full Text] [Related]
14. [The role of Ca2+/calmodulin-dependent protein kinase II in the cellular signal transduction]. Fukunaga K Nihon Yakurigaku Zasshi; 1993 Dec; 102(6):355-69. PubMed ID: 8282267 [TBL] [Abstract][Full Text] [Related]
15. Ca(2+)-induced persistent protein kinase C activation in rat hippocampal homogenates. Sessoms JS; Chen SJ; Chetkovich DM; Powell CM; Roberson ED; Sweatt JD; Klann E Second Messengers Phosphoproteins; 1992-1993; 14(3):109-26. PubMed ID: 1345337 [TBL] [Abstract][Full Text] [Related]
16. Neonatal isolation accelerates the developmental switch in the signalling cascades for long-term potentiation induction. Huang CC; Chou PH; Yang CH; Hsu KS J Physiol; 2005 Dec; 569(Pt 3):789-99. PubMed ID: 16223759 [TBL] [Abstract][Full Text] [Related]
17. Role of the neurogranin concentrated in spines in the induction of long-term potentiation. Zhabotinsky AM; Camp RN; Epstein IR; Lisman JE J Neurosci; 2006 Jul; 26(28):7337-47. PubMed ID: 16837580 [TBL] [Abstract][Full Text] [Related]
18. Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus. Ramakers GM; Pasinelli P; van Beest M; van der Slot A; Gispen WH; De Graan PN Neurosci Lett; 2000 May; 286(1):53-6. PubMed ID: 10822151 [TBL] [Abstract][Full Text] [Related]
19. The aniracetam metabolite 2-pyrrolidinone induces a long-term enhancement in AMPA receptor responses via a CaMKII pathway. Nishizaki T; Matsumura T Brain Res Mol Brain Res; 2002 Jan; 98(1-2):130-4. PubMed ID: 11834304 [TBL] [Abstract][Full Text] [Related]
20. Galantamine enhancement of long-term potentiation is mediated by calcium/calmodulin-dependent protein kinase II and protein kinase C activation. Moriguchi S; Shioda N; Han F; Yeh JZ; Narahashi T; Fukunaga K Hippocampus; 2009 Sep; 19(9):844-54. PubMed ID: 19253410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]