BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7647089)

  • 1. Preparation by site-directed mutagenesis and characterization of the E211Q mutant of yeast enolase 1.
    Sangadala VS; Glover CV; Robson RL; Holland MJ; Lebioda L; Brewer JM
    Biochim Biophys Acta; 1995 Aug; 1251(1):23-31. PubMed ID: 7647089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of the E168Q site-directed mutant of yeast enolase 1.
    Brewer JM; Robson RL; Glover CV; Holland MJ; Lebioda L
    Proteins; 1993 Dec; 17(4):426-34. PubMed ID: 8108383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward identification of acid/base catalysts in the active site of enolase: comparison of the properties of K345A, E168Q, and E211Q variants.
    Poyner RR; Laughlin LT; Sowa GA; Reed GH
    Biochemistry; 1996 Feb; 35(5):1692-9. PubMed ID: 8634301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of site-directed mutagenesis of His373 of yeast enolase on some of its physical and enzymatic properties.
    Brewer JM; Glover CV; Holland MJ; Lebioda L
    Biochim Biophys Acta; 1997 Jun; 1340(1):88-96. PubMed ID: 9217018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of His159 in yeast enolase catalysis.
    Vinarov DA; Nowak T
    Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic function of loop movement in enolase: preparation and some properties of H159N, H159A, H159F, and N207A enolases.
    Brewer JM; Glover CV; Holland MJ; Lebioda L
    J Protein Chem; 2003 May; 22(4):353-61. PubMed ID: 13678299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism.
    Brewer JM; Glover CV; Holland MJ; Lebioda L
    Biochim Biophys Acta; 1998 Apr; 1383(2):351-5. PubMed ID: 9602170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution.
    Wedekind JE; Poyner RR; Reed GH; Rayment I
    Biochemistry; 1994 Aug; 33(31):9333-42. PubMed ID: 8049235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the G376E and G157D mutations on the stability of yeast enolase--a model for human muscle enolase deficiency.
    Zhao S; Choy BS; Kornblatt MJ
    FEBS J; 2008 Jan; 275(1):97-106. PubMed ID: 18070103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of yeast enolase by Cd(II).
    Spencer SG; Brewer JM
    J Inorg Biochem; 1984 Jan; 20(1):39-52. PubMed ID: 6363624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stopped-flow studies of the reaction of D-tartronate semialdehyde-2-phosphate with human neuronal enolase and yeast enolase 1.
    Brewer JM; McKinnon JS; Phillips RS
    FEBS Lett; 2010 Mar; 584(5):979-83. PubMed ID: 20102712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The H159A mutant of yeast enolase 1 has significant activity.
    Brewer JM; Holland MJ; Lebioda L
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1199-202. PubMed ID: 11027610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution.
    Lebioda L; Stec B
    Biochemistry; 1991 Mar; 30(11):2817-22. PubMed ID: 2007120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII--enzyme complex from yeast at 1.9 A resolution.
    Wedekind JE; Reed GH; Rayment I
    Biochemistry; 1995 Apr; 34(13):4325-30. PubMed ID: 7703246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution.
    Lebioda L; Stec B; Brewer JM; Tykarska E
    Biochemistry; 1991 Mar; 30(11):2823-7. PubMed ID: 2007121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA; Nowak T
    Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export?
    Boël G; Pichereau V; Mijakovic I; Mazé A; Poncet S; Gillet S; Giard JC; Hartke A; Auffray Y; Deutscher J
    J Mol Biol; 2004 Mar; 337(2):485-96. PubMed ID: 15003462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of enzymatic activities in the enolase superfamily: L-talarate/galactarate dehydratase from Salmonella typhimurium LT2.
    Yew WS; Fedorov AA; Fedorov EV; Almo SC; Gerlt JA
    Biochemistry; 2007 Aug; 46(33):9564-77. PubMed ID: 17649980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.