BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7647112)

  • 1. A structure-based multiple sequence alignment of all class I aminoacyl-tRNA synthetases.
    Landès C; Perona JJ; Brunie S; Rould MA; Zelwer C; Steitz TA; Risler JL
    Biochimie; 1995; 77(3):194-203. PubMed ID: 7647112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs.
    Eriani G; Delarue M; Poch O; Gangloff J; Moras D
    Nature; 1990 Sep; 347(6289):203-6. PubMed ID: 2203971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.
    Liu C; Sanders JM; Pascal JM; Hou YM
    RNA; 2012 Feb; 18(2):213-21. PubMed ID: 22184460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases.
    Banik SD; Nandi N
    J Biomol Struct Dyn; 2012; 30(6):701-15. PubMed ID: 22731388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases.
    Blow DM; Bhat TN; Metcalfe A; Risler JL; Brunie S; Zelwer C
    J Mol Biol; 1983 Dec; 171(4):571-6. PubMed ID: 6363712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site.
    Casina VC; Lobashevsky AA; McKinney WE; Brown CL; Alexander RW
    Biochemistry; 2011 Feb; 50(5):763-9. PubMed ID: 21175197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S
    Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase.
    Cavarelli J; Rees B; Ruff M; Thierry JC; Moras D
    Nature; 1993 Mar; 362(6416):181-4. PubMed ID: 8450889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.
    Cusack S; Härtlein M; Leberman R
    Nucleic Acids Res; 1991 Jul; 19(13):3489-98. PubMed ID: 1852601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p.
    Galani K; Grosshans H; Deinert K; Hurt EC; Simos G
    EMBO J; 2001 Dec; 20(23):6889-98. PubMed ID: 11726524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code.
    Härtlein M; Cusack S
    J Mol Evol; 1995 May; 40(5):519-30. PubMed ID: 7540217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The class II aminoacyl-tRNA synthetases and their active site: evolutionary conservation of an ATP binding site.
    Eriani G; Cavarelli J; Martin F; Ador L; Rees B; Thierry JC; Gangloff J; Moras D
    J Mol Evol; 1995 May; 40(5):499-508. PubMed ID: 7783225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity.
    Banerjee P; Warf MB; Alexander R
    Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
    Zhang CM; Perona JJ; Ryu K; Francklyn C; Hou YM
    J Mol Biol; 2006 Aug; 361(2):300-11. PubMed ID: 16843487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial role of an idiosyncratic insertion in the Rossman fold of class 1 aminoacyl-tRNA synthetases: the case of methionyl-tRNA synthetase.
    Fourmy D; Mechulam Y; Blanquet S
    Biochemistry; 1995 Dec; 34(48):15681-8. PubMed ID: 7495798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA binding determinant in some class I tRNA synthetases identified by alignment-guided mutagenesis.
    Shepard A; Shiba K; Schimmel P
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9964-8. PubMed ID: 1329109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rationally engineered misacylating aminoacyl-tRNA synthetase.
    Bullock TL; Rodríguez-Hernández A; Corigliano EM; Perona JJ
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7428-33. PubMed ID: 18477696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complex evolutionary history of aminoacyl-tRNA synthetases.
    Chaliotis A; Vlastaridis P; Mossialos D; Ibba M; Becker HD; Stathopoulos C; Amoutzias GD
    Nucleic Acids Res; 2017 Feb; 45(3):1059-1068. PubMed ID: 28180287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase.
    Nureki O; Vassylyev DG; Katayanagi K; Shimizu T; Sekine S; Kigawa T; Miyazawa T; Yokoyama S; Morikawa K
    Science; 1995 Mar; 267(5206):1958-65. PubMed ID: 7701318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.