These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7647229)
1. Engineering a domain-locking disulfide into a bacterial malate dehydrogenase produces a redox-sensitive enzyme. Muslin EH; Li D; Stevens FJ; Donnelly M; Schiffer M; Anderson LE Biophys J; 1995 Jun; 68(6):2218-23. PubMed ID: 7647229 [TBL] [Abstract][Full Text] [Related]
2. Oxidation-reduction properties of two engineered redox-sensitive mutant Escherichia coli malate dehydrogenases. Setterdahl A; Hirasawa M; Bucher LM; Dholakia CA; Jacquot P; Yards H; Miller F; Stevens FJ; Knaff DB; Anderson LE Arch Biochem Biophys; 2000 Oct; 382(1):15-21. PubMed ID: 11051092 [TBL] [Abstract][Full Text] [Related]
3. Cloning, site-specific mutagenesis, expression and characterization of full-length chloroplast NADP-malate dehydrogenase from Pisum sativum. Reng W; Riessland R; Scheibe R; Jaenicke R Eur J Biochem; 1993 Oct; 217(1):189-97. PubMed ID: 8223554 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form. Johansson K; Ramaswamy S; Saarinen M; Lemaire-Chamley M; Issakidis-Bourguet E; Miginiac-Maslow M; Eklund H Biochemistry; 1999 Apr; 38(14):4319-26. PubMed ID: 10194350 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of the second regulatory disulfide bridge of recombinant sorghum leaf NADP-malate dehydrogenase. Issakidis E; Saarinen M; Decottignies P; Jacquot JP; Crétin C; Gadal P; Miginiac-Maslow M J Biol Chem; 1994 Feb; 269(5):3511-7. PubMed ID: 8106392 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of light modulation: identification of potential redox-sensitive cysteines distal to catalytic site in light-activated chloroplast enzymes. Li D; Stevens FJ; Schiffer M; Anderson LE Biophys J; 1994 Jul; 67(1):29-35. PubMed ID: 7918997 [TBL] [Abstract][Full Text] [Related]
7. Determination of the regulatory disulfide bonds of NADP-dependent malate dehydrogenase from Pisum sativum by site-directed mutagenesis. Riessland R; Jaenicke R Biol Chem; 1997 Sep; 378(9):983-8. PubMed ID: 9348107 [TBL] [Abstract][Full Text] [Related]
8. Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADP-malate dehydrogenase provides a structural basis for the relief of autoinhibition. Krimm I; Goyer A; Issakidis-Bourguet E; Miginiac-Maslow M; Lancelin JM J Biol Chem; 1999 Dec; 274(49):34539-42. PubMed ID: 10574915 [TBL] [Abstract][Full Text] [Related]
10. Redox equilibria between the regulatory thiols of light/dark-modulated chloroplast enzymes and dithiothreitol: fine-tuning by metabolites. Faske M; Holtgrefe S; Ocheretina O; Meister M; Backhausen JE; Scheibe R Biochim Biophys Acta; 1995 Feb; 1247(1):135-42. PubMed ID: 7873583 [TBL] [Abstract][Full Text] [Related]
11. Oxidation-reduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphate-malate dehydrogenase. Hirasawa M; Ruelland E; Schepens I; Issakidis-Bourguet E; Miginiac-Maslow M; Knaff DB Biochemistry; 2000 Mar; 39(12):3344-50. PubMed ID: 10727227 [TBL] [Abstract][Full Text] [Related]
12. Chloroplast NADP-malate dehydrogenase: structural basis of light-dependent regulation of activity by thiol oxidation and reduction. Carr PD; Verger D; Ashton AR; Ollis DL Structure; 1999 Apr; 7(4):461-75. PubMed ID: 10196131 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity. Schepens I; Johansson K; Decottignies P; Gillibert M; Hirasawa M; Knaff DB; Miginiac-Maslow M J Biol Chem; 2000 Jul; 275(28):20996-1001. PubMed ID: 10801830 [TBL] [Abstract][Full Text] [Related]
14. Primary structure and analysis of the location of the regulatory disulfide bond of pea chloroplast NADP-malate dehydrogenase. Scheibe R; Kampfenkel K; Wessels R; Tripier D Biochim Biophys Acta; 1991 Jan; 1076(1):1-8. PubMed ID: 1986782 [TBL] [Abstract][Full Text] [Related]
15. An active-site cysteine of sorghum leaf NADP-malate dehydrogenase studied by site-directed mutagenesis. Lemaire M; Issakidis E; Ruelland E; Decottignies P; Miginiac-Maslow M FEBS Lett; 1996 Mar; 382(1-2):137-40. PubMed ID: 8612735 [TBL] [Abstract][Full Text] [Related]
17. Limited proteolysis of inactive tetrameric chloroplast NADP-malate dehydrogenase produces active dimers. Fickenscher K; Scheibe R Arch Biochem Biophys; 1988 Feb; 260(2):771-9. PubMed ID: 3341764 [TBL] [Abstract][Full Text] [Related]
18. The catalytic site of chloroplastic NADP-dependent malate dehydrogenase contains a His/Asp pair. Lemaire M; Miginiac-Maslow M; Decottignies P Eur J Biochem; 1996 Mar; 236(3):947-52. PubMed ID: 8665917 [TBL] [Abstract][Full Text] [Related]
19. An internal cysteine is involved in the thioredoxin-dependent activation of sorghum leaf NADP-malate dehydrogenase. Ruelland E; Lemaire-Chamley M; Le Maréchal P; Issakidis-Bourguet E; Djukic N; Miginiac-Maslow M J Biol Chem; 1997 Aug; 272(32):19851-7. PubMed ID: 9242647 [TBL] [Abstract][Full Text] [Related]
20. NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling. Gómez Ia; Merchán F; Fernández E; Quesada A Plant Mol Biol; 2002 Feb; 48(3):211-21. PubMed ID: 11855723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]