BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 7647778)

  • 1. Stop codon FGFR3 mutations in thanatophoric dwarfism type 1.
    Rousseau F; Saugier P; Le Merrer M; Munnich A; Delezoide AL; Maroteaux P; Bonaventure J; Narcy F; Sanak M
    Nat Genet; 1995 May; 10(1):11-2. PubMed ID: 7647778
    [No Abstract]   [Full Text] [Related]  

  • 2. The respiratory elastance ratio in thanatophoric dysplasia: A case report.
    Aoki K; Kurosawa H; Shirasawa A; Shiomi Y; Seino Y
    Pediatr Int; 2023; 65(1):e15534. PubMed ID: 36965046
    [No Abstract]   [Full Text] [Related]  

  • 3. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1).
    Rousseau F; el Ghouzzi V; Delezoide AL; Legeai-Mallet L; Le Merrer M; Munnich A; Bonaventure J
    Hum Mol Genet; 1996 Apr; 5(4):509-12. PubMed ID: 8845844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3.
    Tavormina PL; Shiang R; Thompson LM; Zhu YZ; Wilkin DJ; Lachman RS; Wilcox WR; Rimoin DL; Cohn DH; Wasmuth JJ
    Nat Genet; 1995 Mar; 9(3):321-8. PubMed ID: 7773297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia.
    Rousseau F; Bonaventure J; Legeai-Mallet L; Pelet A; Rozet JM; Maroteaux P; Le Merrer M; Munnich A
    Nature; 1994 Sep; 371(6494):252-4. PubMed ID: 8078586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell profiling of multiple myeloma reveals molecular response to FGFR3 inhibitor despite clinical progression.
    Croucher DC; Devasia AJ; Abelman DD; Mahdipour-Shirayeh A; Li Z; Erdmann N; Tiedemann R; Pugh TJ; Trudel S
    Cold Spring Harb Mol Case Stud; 2023 Apr; 9(2):. PubMed ID: 36639200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal Bone Disorders.
    Saraff V; Nadar R; Shaw N
    Front Pediatr; 2021; 9():602552. PubMed ID: 33889553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular investigations of development and diseases of the brain of higher mammals using the ferret.
    Kawasaki H
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(5):259-269. PubMed ID: 28496051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achondroplasia: Development, pathogenesis, and therapy.
    Ornitz DM; Legeai-Mallet L
    Dev Dyn; 2017 Apr; 246(4):291-309. PubMed ID: 27987249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiological analyses of cortical malformation using gyrencephalic mammals.
    Masuda K; Toda T; Shinmyo Y; Ebisu H; Hoshiba Y; Wakimoto M; Ichikawa Y; Kawasaki H
    Sci Rep; 2015 Oct; 5():15370. PubMed ID: 26482531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A case of thanatophoric dysplasia type 2: a novel mutation.
    Gülaşı S; Atıcı A; Çelik Y
    J Clin Res Pediatr Endocrinol; 2015 Mar; 7(1):73-6. PubMed ID: 25800480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of chromosomal abnormalities in a patient with thanatophoric dysplasia (TD) type I: The first report describing an important association between cytogenetic findings and TD.
    Turgut M; Demirhan O; Tunc E; Bucak IH; Canoz PY; Temiz F; Tumgor G
    Am J Case Rep; 2012; 13():109-13. PubMed ID: 23569503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Height matters-from monogenic disorders to normal variation.
    Durand C; Rappold GA
    Nat Rev Endocrinol; 2013 Mar; 9(3):171-7. PubMed ID: 23337954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias.
    Foldynova-Trantirkova S; Wilcox WR; Krejci P
    Hum Mutat; 2012 Jan; 33(1):29-41. PubMed ID: 22045636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting mutant fibroblast growth factor receptors in cancer.
    Greulich H; Pollock PM
    Trends Mol Med; 2011 May; 17(5):283-92. PubMed ID: 21367659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic inactivation of ERK1 and ERK2 in chondrocytes promotes bone growth and enlarges the spinal canal.
    Sebastian A; Matsushita T; Kawanami A; Mackem S; Landreth GE; Murakami S
    J Orthop Res; 2011 Mar; 29(3):375-9. PubMed ID: 20922792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGFR3-related dwarfism and cell signaling.
    Harada D; Yamanaka Y; Ueda K; Tanaka H; Seino Y
    J Bone Miner Metab; 2009; 27(1):9-15. PubMed ID: 19066716
    [No Abstract]   [Full Text] [Related]  

  • 18. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway.
    Matsushita T; Wilcox WR; Chan YY; Kawanami A; Bükülmez H; Balmes G; Krejci P; Mekikian PB; Otani K; Yamaura I; Warman ML; Givol D; Murakami S
    Hum Mol Genet; 2009 Jan; 18(2):227-40. PubMed ID: 18923003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of Spry1 in chondrocytes causes attenuated FGFR ubiquitination and sustained ERK activation resulting in chondrodysplasia.
    Yang X; Harkins LK; Zubanova O; Harrington A; Kovalenko D; Nadeau RJ; Chen PY; Toher JL; Lindner V; Liaw L; Friesel R
    Dev Biol; 2008 Sep; 321(1):64-76. PubMed ID: 18582454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive activation of MKK6 in chondrocytes of transgenic mice inhibits proliferation and delays endochondral bone formation.
    Zhang R; Murakami S; Coustry F; Wang Y; de Crombrugghe B
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):365-70. PubMed ID: 16387856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.